Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber

Unterkofler, S., Garbos, M. K., Euser, T. G., & Russell, P. S. J. (2013). Long-distance laser propulsion and deformation-monitoring of cells in optofluidic photonic crystal fiber. SI, 6(9), 743-752. doi:10.1002/jbio.201200180.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Unterkofler, Sarah1, 2, Autor           
Garbos, Martin K.2, Autor           
Euser, Tijmen G.2, Autor           
Russell, Philip St. J.2, Autor           
Affiliations:
1International Max Planck Research School, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364697              
2Russell Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364721              

Inhalt

einblenden:
ausblenden:
Schlagwörter: RED-BLOOD-CELLS; OPTICAL DEFORMABILITY; SINGLE CELLS; LIVING CELLS; LIQUID; FORCE; CAPILLARIES; PARTICLES; MECHANICS; LIGHTBiochemistry & Molecular Biology; Biophysics; Optics; optofluidics; hollow waveguides; optical forces; integrated optics; biomechanics; biophysics;
 Zusammenfassung: We introduce a unique method for laser-propelling individual cells over distances of 10s of cm through stationary liquid in a microfluidic channel. This is achieved by using liquid-filled hollow-core photonic crystal fiber (HC-PCF). HC-PCF provides low-loss light guidance in a well-defined single mode, resulting in highly uniform optical trapping and propulsive forces in the core which at the same time acts as a microfluidic channel. Cells are trapped laterally at the center of the core, typically several microns away from the glass interface, which eliminates adherence effects and external perturbations. During propagation, the velocity of the cells is conveniently monitored using a non-imaging Doppler velocimetry technique. Dynamic changes in velocity at constant optical powers up to 350 mW indicate stress-induced changes in the shape of the cells, which is confirmed by bright-field microscopy. Our results suggest that HC-PCF will be useful as a new tool for the study of single-cell biomechanics. ((c) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2013
 Publikationsstatus: Erschienen
 Seiten: 10
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000327816100009
DOI: 10.1002/jbio.201200180
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: SI
Genre der Quelle: Heft
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: BOSCHSTRASSE 12, D-69469 WEINHEIM, GERMANY : WILEY-V C H VERLAG GMBH
Seiten: - Band / Heft: 6 (9) Artikelnummer: - Start- / Endseite: 743 - 752 Identifikator: ISSN: 1864-063X

Quelle 2

einblenden:
ausblenden:
Titel: JOURNAL OF BIOPHOTONICS
  Alternativer Titel : J BIOPHOTONICS
  Alternativer Titel : J. Biophotonics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 6 Artikelnummer: - Start- / Endseite: - Identifikator: -