日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Squeezed light from a silicon micromechanical resonator

Safavi-Naeini, A. H., Groeblacher, S., Hill, J. T., Chan, J., Aspelmeyer, M., & Painter, O. (2013). Squeezed light from a silicon micromechanical resonator. NATURE, 500(7461), 185-189. doi:10.1038/nature12307.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Safavi-Naeini, Amir H.1, 著者
Groeblacher, Simon2, 著者           
Hill, Jeff T.1, 著者
Chan, Jasper1, 著者
Aspelmeyer, Markus1, 著者
Painter, Oskar2, 著者           
所属:
1external, ou_persistent22              
2Painter Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society, ou_2364717              

内容説明

表示:
非表示:
キーワード: QUANTUM-NOISE REDUCTION; RADIATION-PRESSURE; OPTICAL CAVITY; GROUND-STATE; INTERFEROMETER; MICROMIRROR; OSCILLATORScience & Technology - Other Topics;
 要旨: Monitoring a mechanical object's motion, even with the gentle touch of light, fundamentally alters its dynamics. The experimental manifestation of this basic principle of quantum mechanics, its link to the quantum nature of light and the extension of quantum measurement to the macroscopic realm have all received extensive attention over the past half-century(1,2). The use of squeezed light, with quantum fluctuations below that of the vacuum field, was proposed nearly three decades ago(3) as a means of reducing the optical read-out noise in precision force measurements. Conversely, it has also been proposed that a continuous measurement of a mirror's position with light may itself give rise to squeezed light(4,5). Such squeezed-light generation has recently been demonstrated in a system of ultracold gas-phase atoms(6) whose centre-of-mass motion is analogous to the motion of a mirror. Here we describe the continuous position measurement of a solid-state, optomechanical system fabricated from a silicon microchip and comprising a micromechanical resonator coupled to a nanophotonic cavity. Laser light sent into the cavity is used to measure the fluctuations in the position of the mechanical resonator at a measurement rate comparable to its resonance frequency and greater than its thermal decoherence rate. Despite the mechanical resonator's highly excited thermal state (10(4) phonons), we observe, through homodyne detection, squeezing of the reflected light's fluctuation spectrum at a level 4.5 +/- 0.2 per cent below that of vacuum noise over a bandwidth of a few megahertz around the mechanical resonance frequency of 28 megahertz. With further device improvements, on-chip squeezing at significant levels should be possible, making such integrated microscale devices well suited for precision metrology applications.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2013
 出版の状態: 出版
 ページ: 5
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): ISI: 000322825500030
DOI: 10.1038/nature12307
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: NATURE
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND : NATURE PUBLISHING GROUP
ページ: - 巻号: 500 (7461) 通巻号: - 開始・終了ページ: 185 - 189 識別子(ISBN, ISSN, DOIなど): ISSN: 0028-0836