Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain

Ahmed, W. W., Wolfram, T., Goldyn, A. M., Bruellhoff, K., Rioja, B. A., Möller, M., et al. (2010). Myoblast morphology and organization on biochemically micro-patterned hydrogel coatings under cyclic mechanical strain. Biomaterials, 31(2), 250-258. doi:10.1016/j.biomaterials.2009.09.047.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Biomaterials_31_2010_250.pdf (beliebiger Volltext), 2MB
 
Datei-Permalink:
-
Name:
Biomaterials_31_2010_250.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Medical Research, MHMF; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ahmed, Wylie W., Autor
Wolfram, Tobias, Autor
Goldyn, Alexandra M.1, 2, Autor           
Bruellhoff, Kristina, Autor
Rioja, Borja Aragüés, Autor
Möller, Martin, Autor
Spatz, Joachim P.1, 2, Autor           
Saif, Taher A., Autor
Groll, Jürgen, Autor
Kemkemer, Ralf1, Autor           
Affiliations:
1Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
2Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Cell adhesion; Passivation; Cyclic strain; Muscle cell differentiation; Polydimethylsiloxane (PDMS); Micro-patterning
 Zusammenfassung: Mechanical forces and geometric constraints play critical roles in determining cell functionality and tissue development. Novel experimental methods are essential to explore the underlying biological mechanisms of cell response. We present a versatile method to culture cells on adhesive micro-patterned substrates while applying long-term cyclic tensile strain (CTS). A polydimethysiloxane (PDMS) mold is coated with a cell repulsive NCO-sP(EO-stat-PO) hydrogel which in turn is covalently patterned by fibronectin using micro-contact printing. This results in two-dimensional, highly selective cell-adhesive micro-patterns. The substrates allow application of CTS to adherent cells for more than 4 days under cell culture conditions without unspecific adhesion. The applicability of our system is demonstrated by studying the adaptive response of C2C12 skeletal myoblasts seeded on fibronectin lines with different orientations relative to the strain direction. After application of CTS (amplitude of 7%, frequency of 0.5 Hz) we find that actin fiber organization is dominantly controlled by CTS. Nuclei shape is predominantly affected by the constraint of the adhesive lines, resulting in significant elongation. Morphologically, myotube formation was incomplete after 4 days of culture, but actin striations were observed exclusively on the 45 degrees line patterns subjected to CTS, the direction of maximum shear strain.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2009-08-172009-09-112009-09-262010-01-01
 Publikationsstatus: Erschienen
 Seiten: 9
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Biomaterials
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Guildford, England : Elsevier
Seiten: - Band / Heft: 31 (2) Artikelnummer: - Start- / Endseite: 250 - 258 Identifikator: ISSN: 0142-9612
CoNE: https://pure.mpg.de/cone/journals/resource/954925472369