English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Python algorithms in particle tracking microrheology

Maier, T., & Haraszti, T. (2012). Python algorithms in particle tracking microrheology. Chemistry Central journal, 6: 144, pp. 1-9. doi:10.1186/1752-153X-6-144.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0010-4BD4-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002E-7F00-1
Genre: Journal Article

Files

show Files
hide Files
:
ChemistCentralJ_6_2012_144.pdf (Any fulltext), 948KB
 
File Permalink:
-
Name:
ChemistCentralJ_6_2012_144.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Maier, Timo1, 2, Author              
Haraszti, Tamas1, 2, Author              
Affiliations:
1Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
2Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany, ou_persistent22              

Content

show
hide
Free keywords: Particle tracking microrheology; Numerical conversion method; Software library; Dynamic interpolation
 Abstract: Background Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing and tools allowing control of the calculation errors. Results We report the development of a software package collecting functions and scripts written in Python for automated and manual data processing, to extract viscoelastic information about the sample using recorded particle trajectories. The resulting program package analyzes the fundamental diffusion characteristics of particle trajectories and calculates the frequency dependent complex shear modulus using methods published in the literature. In order to increase conversion accuracy, segmentwise, double step, range-adaptive fitting and dynamic sampling algorithms are introduced to interpolate the data in a splinelike manner. Conclusions The presented set of algorithms allows for flexible data processing for particle tracking microrheology. The package presents improved algorithms for mean square displacement estimation, controlling effects of frame loss during recording, and a novel numerical conversion method using segmentwise interpolation, decreasing the conversion error from about 100% to the order of 1%.

Details

show
hide
Language(s): eng - English
 Dates: 2012-09-132012-11-142012-09-13
 Publication Status: Published in print
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Chemistry Central journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 Sequence Number: 144 Start / End Page: 1 - 9 Identifier: ISSN: 1752-153X
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000221710