English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses

Ranzinger, J., Rustom, A., Abel, M. P., Leyh, J., Kihm, L., Witkowski, M., et al. (2011). Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses. PLoS One, 6(12): e29537, pp. 1-8. doi:0.1371/journal.pone.0029537.

Item is

Files

show Files
hide Files
:
PLoSONE_6_2011_29537e.pdf (Any fulltext), 593KB
 
File Permalink:
-
Name:
PLoSONE_6_2011_29537e.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ranzinger, Julia1, 2, Author           
Rustom, Amin1, 2, Author           
Abel, Marcus Patrick1, Author           
Leyh, Julia, Author
Kihm, Lars, Author
Witkowski, Margarete, Author
Scheurich, Peter, Author
Zeier, Martin, Author
Schwenger, Vedat, Author
Affiliations:
1Cellular Biophysics, Max Planck Institute for Medical Research, Max Planck Society, ou_2364731              
2Biophysical Chemistry, Institute of Physical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: A well-known role of human peritoneal mesothelial cells (HPMCs), the resident cells of the peritoneal cavity, is the generation of an immune response during peritonitis by activation of T-cells via antigen presentation. Recent findings have shown that intercellular nanotubes (NTs) mediate functional connectivity between various cell types including immune cells - such as T-cells, natural killer (NK) cells or macrophages - by facilitating a spectrum of long range cell-cell interactions. Although of medical interest, the relevance of NT-related findings for human medical conditions and treatment, e.g. in relation to inflammatory processes, remains elusive, particularly due to a lack of appropriate in vivo data. Here, we show for the first time that primary cultures of patient derived HPMCs are functionally connected via membranous nanotubes. NT formation appears to be actin cytoskeleton dependent, mediated by the action of filopodia. Importantly, significant variances in NT numbers between different donors as a consequence of pathophysiological alterations were observable. Furthermore, we show that TNF-α induces nanotube formation and demonstrate a strong correlation of NT connectivity in accordance with the cellular cholesterol level and distribution, pointing to a complex involvement of NTs in inflammatory processes with potential impact for clinical treatment.

Details

show
hide
Language(s): eng - English
 Dates: 2011-09-272011-11-302011-12-272011-12-27
 Publication Status: Issued
 Pages: 8
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 6 (12) Sequence Number: e29537 Start / End Page: 1 - 8 Identifier: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850