English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants

Efstathiou, C. I., Matejovicová, J., Bieser, J., & Lammel, G. (2016). Evaluation of gas-particle partitioning in a regional air quality model for organic pollutants. Atmospheric Chemistry and Physics, 16, 15327-15345. doi:0.5194/acp-16-15327-2016.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Efstathiou, C. I., Author
Matejovicová, J., Author
Bieser, J., Author
Lammel, G.1, Author           
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              

Content

show
hide
Free keywords: -
 Abstract: Persistent organic pollutants (POPs) are of considerable concern due to their well-recognized toxicity and their potential to bioaccumulate and engage in long-range transport. These compounds are semi-volatile and, therefore, create a partition between vapour and condensed phases in the atmosphere, while both phases can undergo chemical reactions. This work describes the extension of the Community Multiscale Air Quality (CMAQ) modelling system to POPs with a focus on establishing an adaptable framework that accounts for gaseous chemistry, heterogeneous reactions, and gas-particle partitioning (GPP). The effect of GPP is assessed by implementing a set of independent parameterizations within the CMAQ aerosol module, including the Junge–Pankow (JP) adsorption model, the Harner–Bidleman (HB) organic matter (OM) absorption model, and the dual Dachs–Eisenreich (DE) black carbon (BC) adsorption and OM absorption model. Use of these descriptors in a modified version of CMAQ for benzo[a]pyrene (BaP) results in different fate and transport patterns as demonstrated by regional-scale simulations performed for a European domain during 2006. The dual DE model predicted 24.1 % higher average domain concentrations compared to the HB model, which was in turn predicting 119.2 % higher levels compared to the base- line JP model. Evaluation with measurements from the European Monitoring and Evaluation Programme (EMEP) reveals the capability of the more extensive DE model to better capture the ambient levels and seasonal behaviour of BaP. It is found that the heterogeneous reaction of BaP with O3 may decrease its atmospheric lifetime by 25.2 % (domain and annual average) and near-ground concentrations by 18.8 %. Marginally better model performance was found for one of the six EMEP stations (Košetice) when heterogeneous BaP reactivity was included. Further analysis shows that, for the rest of the EMEP locations, the model continues to underestimate BaP levels, an observation that can be attributed to low emission estimates for such remote areas. These findings suggest that, when modelling the fate and transport of organic pollutants on large spatio-temporal scales, the selection and parameterization of GPP can be as important as degradation (reactivity).

Details

show
hide
Language(s): eng - English
 Dates: 2016-12-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 0.5194/acp-16-15327-2016
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geosciences Union
Pages: - Volume / Issue: 16 Sequence Number: - Start / End Page: 15327 - 15345 Identifier: ISSN: 1680-7316
CoNE: https://pure.mpg.de/cone/journals/resource/111030403014016