English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes.

Balzarotti, F., Eilers, Y., Gwosch, K., Gynnå, A. H., Westphal, V., Stefani, F. D., et al. (2017). Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science, 355(6325), 606-612. doi:10.1126/science.aak9913.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-2D9A-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-08DE-D
Genre: Journal Article

Files

show Files
hide Files
:
2377803.pdf (Publisher version), 2MB
Name:
2377803.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Balzarotti, F.1, Author              
Eilers, Y., Author
Gwosch, K.1, Author              
Gynnå, A. H., Author
Westphal, V.1, Author              
Stefani, F. D., Author
Elf, J., Author
Hell, S. W.1, Author              
Affiliations:
1Department of NanoBiophotonics, MPI for Biophysical Chemistry, Max Planck Society, ou_578627              

Content

show
hide
Free keywords: -
 Abstract: We introduce MINFLUX, a concept for localizing photon emitters in space. By probing the emitter with a local intensity minimum of excitation light, MINFLUX minimizes the fluorescence photons needed for high localization precision. A 22-fold reduction of photon detections over that required in popular centroid-localization is demonstrated. In superresolution microscopy, MINFLUX attained ~1-nm precision, resolving molecules only 6 nm apart. Tracking single fluorescent proteins by MINFLUX increased the temporal resolution and the number of localizations per trace by 100-fold, as demonstrated with diffusing 30S ribosomal subunits in living Escherichia coli As conceptual limits have not been reached, we expect this localization modality to break new ground for observing the dynamics, distribution, and structure of macromolecules in living cells and beyond.

Details

show
hide
Language(s): eng - English
 Dates: 2016-12-222017-02-10
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1126/science.aak9913
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 355 (6325) Sequence Number: - Start / End Page: 606 - 612 Identifier: -