Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Tunable pseudocapacitance in 3D TiO2−δ nanomembranes enabling superior lithium storage performance

Huang, S., Zhang, L., Lu, X., Liu, L., Liu, L., Sun, X., et al. (2017). Tunable pseudocapacitance in 3D TiO2−δ nanomembranes enabling superior lithium storage performance. ACS Nano, 11(1), 821-830. doi:10.1021/acsnano.6b07274.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2378200.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
2378200.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2378200_s.pdf (Ergänzendes Material), 4MB
Name:
2378200_s.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Huang, Shaozhuan, Autor
Zhang, Lin, Autor
Lu, Xueyi, Autor
Liu, Lifeng, Autor
Liu, Lixiang, Autor
Sun, Xiaolei, Autor
Yin, Yin, Autor
Oswald, Steffen, Autor
Zou, Zhaoyong1, Autor           
Ding, Fei, Autor
Schmidt, Oliver G., Autor
Affiliations:
1Wouter Habraken (Indep. Res.), Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2231638              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Nanostructured TiO2 of different polymorphs, mostly prepared by hydro/solvothermal methods, have been extensively studied for more than a decade as anode materials in lithium ion batteries. Enormous efforts have been devoted to improving the electrical conductivity and lithium ion diffusivity in chemically synthesized TiO2 nanostructures. In this work we demonstrate that 3D Ti3+-self-doped TiO2 (TiO2−δ) nanomembranes, which are prepared by physical vapor deposition combined with strain-released rolled-up technology, have a great potential to address several of the long-standing challenges associated with TiO2 anodes. The intrinsic electrical conductivity of the TiO2 layer can be significantly improved by the in situ generated Ti3+, and the amorphous, thin TiO2 nanomembrane provides a shortened Li+ diffusion pathway. The fabricated material shows a favorable electrochemical reaction mechanism for lithium storage. Further, post-treatments are employed to adjust the Ti3+ concentration and crystallinity degree in TiO2 nanomembranes, providing an opportunity to investigate the important influences of Ti3+ self-doping and amorphous structures on the electrochemical processes. With these experiments, the pseudocapacitance contributions in TiO2 nanomembranes with different crystallinity degree are quantified and verified by an in-depth kinetics analysis. Additionally, an ultrathin metallic Ti layer can be included, which further improves the lithium storage properties of the TiO2, giving rise to the state-of-the-art capacity (200 mAh g–1 at 1 C), excellent rate capability (up to 50 C), and ultralong lifetime (for 5000 cycles at 10 C, with an extraordinary retention of 100%) of TiO2 anodes.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-12-272017
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsnano.6b07274
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Temporary Position for Principal Investigator
Grant ID : -
Förderprogramm : -
Förderorganisation : DFG

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 11 (1) Artikelnummer: - Start- / Endseite: 821 - 830 Identifikator: ISSN: 1936-0851