Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Estimating body mass from skeletal material: New predictive equations and methodological insights from analyses of a known-mass sample of humans

Elliott, M., Kurki, H., Weston, D. A., & Collard, M. (2016). Estimating body mass from skeletal material: New predictive equations and methodological insights from analyses of a known-mass sample of humans. Archaeological and Anthropological Sciences, 8(4), 731-750. doi:10.1007/s12520-015-0252-5.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Elliott, Marina, Autor
Kurki, Helen, Autor
Weston, Darlene A.1, Autor           
Collard, Mark, Autor
Affiliations:
1Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Max Planck Society, ou_1497673              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Estimating body mass from skeletal material is a key task for many biological anthropologists. As a result, several sets of regression equations have been derived for cranial and postcranial material. The equations have been applied to a wide range of specimens, but several factors suggest they may not be as reliable as generally assumed. Specifically, since many of the equations were derived from small reference samples using proxies for key variables and/or mean data, the nature of the relationship between the skeletal variables and body mass has often not been adequately demonstrated. In addition, few of the equations have been validated on known samples, making their accuracy and precision uncertain. Lastly, because no study has used cranial and postcranial material from the same individuals, the two approaches have never been systematically compared. The present study responded to these issues by deriving new regression equations from cranial and postcranial material using a large sample of modern humans of known-mass and associated skeletal variables measured from CT data. The equations were then tested on an independent sample, also of known mass. The results show that the newly derived equations estimate mass more accurately than existing equations for most variables. However, improvements were modest and accuracy rates remained relatively low. In addition, variables that had previously been argued to be ideal predictors were not the most accurate, and the current criteria used to assess equations did not ensure reliability. Overall, the results suggest that body mass estimates must be used cautiously and that further research is required.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1007/s12520-015-0252-5
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Archaeological and Anthropological Sciences
  Kurztitel : Archaeol Anthropol Sci
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 8 (4) Artikelnummer: - Start- / Endseite: 731 - 750 Identifikator: ISSN: 1866-9557
ISSN: 1866-9565