Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quantum-chemical insights from deep tensor neural networks

Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R., & Tkatchenko, A. (2017). Quantum-chemical insights from deep tensor neural networks. Nature Communications, 8: 13890. doi:10.1038/ncomms13890.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
ncomms13890.pdf (Verlagsversion), 887KB
Name:
ncomms13890.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Schütt, Kristof T.1, Autor
Arbabzadah, Farhad1, Autor
Chmiela, Stefan1, Autor
Müller, Klaus R.1, 2, Autor
Tkatchenko, Alexandre3, 4, Autor           
Affiliations:
1Machine Learning Group, Technische Universität Berlin, Marchstr. 23, 10587 Berlin, Germany, ou_persistent22              
2Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Republic of Korea, ou_persistent22              
3Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
4Physics and Materials Science Research Unit, University of Luxembourg, Luxembourg, L-1511 Luxembourg, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Learning from data has led to paradigm shifts in a multitude of disciplines, including web, text and image search, speech recognition, as well as bioinformatics. Can machine learning enable similar breakthroughs in understanding quantum many-body systems? Here we develop an efficient deep learning approach that enables spatially and chemically resolved insights into quantum-mechanical observables of molecular systems. We unify concepts from many-body Hamiltonians with purpose-designed deep tensor neural networks, which leads to size-extensive and uniformly accurate (1 kcal mol−1) predictions in compositional and configurational chemical space for molecules of intermediate size. As an example of chemical relevance, the model reveals a classification of aromatic rings with respect to their stability. Further applications of our model for predicting atomic energies and local chemical potentials in molecules, reliable isomer energies, and molecules with peculiar electronic structure demonstrate the potential of machine learning for revealing insights into complex quantum-chemical systems.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2016-06-242016-11-092017-01-09
 Publikationsstatus: Online veröffentlicht
 Seiten: 8
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/ncomms13890
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 8 Band / Heft: 8 Artikelnummer: 13890 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723