English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Non-Hermitian surface hopping

Gao, X., & Thiel, W. (2017). Non-Hermitian surface hopping. Physical Review E, 95(1): 013308. doi:10.1103/PhysRevE.95.013308.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Gao, Xing1, Author           
Thiel, Walter1, Author           
Affiliations:
1Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              

Content

show
hide
Free keywords: -
 Abstract: We present a generalized non-Hermitian equation of motion (nH-EOM) to go beyond standard trajectory surface hopping dynamics. The derivation is based on the Born-Huang expansion of the total wave function and the polar representation of the nuclear factor. The nH-EOM contains two additional terms, a skew symmetry term iΓ with dissipation operator Γ to account for decoherence, and a kinetic-energy renormalization term to account for phase shifts, without destroying the invariance to the choice of representation. Numerically, the nH-EOM can still be solved efficiently using a semiclassical approximation in the framework of Tully’s fewest-switches surface hopping (FSSH) algorithm. Applications to model Hamiltonians demonstrate improved performance over the standard FSSH approach, through comparison to exact quantum results.

Details

show
hide
Language(s): eng - English
 Dates: 2016-11-292016-08-112017-01-252017-01
 Publication Status: Published in print
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevE.95.013308
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review E
  Other : Phys. Rev. E
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Melville, NY : American Physical Society
Pages: - Volume / Issue: 95 (1) Sequence Number: 013308 Start / End Page: - Identifier: ISSN: 1539-3755
CoNE: https://pure.mpg.de/cone/journals/resource/954925225012