English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structure–Activity–Stability Relationships for Space-Confined PtxNiy Nanoparticles in the Oxygen Reduction Reaction

Mezzavilla, S., Baldizzone, C., Swertz, A.-C., Hodnik, N., Pizzutilo, E., Polymeros, G., et al. (2016). Structure–Activity–Stability Relationships for Space-Confined PtxNiy Nanoparticles in the Oxygen Reduction Reaction. ACS Catalysis, 6(12), 8058-8068. doi:10.1021/acscatal.6b02221.

Item is

Files

show Files

Locators

show
hide
Locator:
Link (Any fulltext)
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Mezzavilla, Stefano1, Author           
Baldizzone, Claudio2, Author           
Swertz, Ann-Christin1, Author           
Hodnik, Nejc2, Author           
Pizzutilo, Enrico2, Author           
Polymeros, George2, Author           
Keeley, Gareth P.2, Author           
Knossalla, Johannes1, Author           
Heggen, Marc3, Author           
Mayrhofer, Karl Johann Jakob2, Author           
Schüth, Ferdi1, Author           
Affiliations:
1Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445589              
2Electrocatalysis, Interface Chemistry and Surface Engineering, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863354              
3Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungzentrum Jülich GmbH, Jülich, Germany, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: This study focuses on the synthesis and electrochemical performance (i.e, activity and stability) of advanced electrocatalysts for the oxygen reduction reaction (ORR), made of Pt–Ni nanoparticles embedded in hollow graphitic spheres (HGS). The mechanism of the confined space alloying, that is, the controlled alloying of bimetallic precursors with different compositions (i.e., Pt3Ni, PtNi, and PtNi3) within the HGS mesoporous shell, was examined in detail. It was found that the presence of platinum during the reduction step, as well as the application of high annealing temperatures (at least 850 °C for 3.5h in Ar), are necessary conditions to achieve the complete encapsulation and the full stability of the catalysts. The evolution of the activity, the electrochemical surface area, and the residual alloy composition of the Pt–Ni@HGS catalysts was thoroughly monitored (at the macro- and nanoscale level) under different degradation conditions. After the initial activation, the embedded Pt–Ni nanoparticles (3–4 nm in size) yield mass activities that are 2- to 3.5-fold higher than that of pure Pt@HGS (depending on the alloy composition). Most importantly, it is demonstrated that under the normal operation range of an ORR catalyst in PEM-FCs (potential excursions between 0.4 and 1.0 VRHE) both the nanoparticle-related degradation pathways (particle agglomeration) and dealloying phenomena are effectively suppressed, irrespectively of the alloy composition. Thus, the initial enhanced activity is completely maintained over an extended degradation protocol. In addition, owing to the peculiar configuration of the catalysts consisting of space-confined nanoparticles, it was possible to elucidate the impact of the dealloying process (as a function of alloy composition and severity of the degradation protocols) separately from other parallel phenomena, providing valuable insight into this elusive degradation mechanism.

Details

show
hide
Language(s): eng - English
 Dates: 2016-10-172016-12-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acscatal.6b02221
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Catalysis
  Abbreviation : ACS Catal.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : ACS
Pages: - Volume / Issue: 6 (12) Sequence Number: - Start / End Page: 8058 - 8068 Identifier: ISSN: 2155-5435
CoNE: https://pure.mpg.de/cone/journals/resource/2155-5435