English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Probabilistic Inference for Determining Options in Reinforcement Learning

Daniel, C., van Hoof, H., Peters, J., & Neumann, G. (2016). Probabilistic Inference for Determining Options in Reinforcement Learning. Machine Learning, Special Issue, 104(2), 337-357. doi:10.1007/s10994-016-5580-x.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Daniel, C.1, Author
van Hoof, H.1, Author
Peters, J2, 3, Author           
Neumann, G.1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              
3Dept. Autonomous Motion, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497646              

Content

show
hide
Free keywords: Abt. Schaal; Abt. Schölkopf
 Abstract: -

Details

show
hide
Language(s): eng - English
 Dates: 2016-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: DanHooPetNeu16
DOI: 10.1007/s10994-016-5580-x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Machine Learning, Special Issue
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Springer Link
Pages: - Volume / Issue: 104 (2) Sequence Number: - Start / End Page: 337 - 357 Identifier: ISSN: 0885-6125
ISSN: 1573-0565