Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the VAHINE mesocosm experiments

Knapp, A. N., Fawcett, S. E., Martinez-Garcia, A., Leblond, N., Moutin, T., & Bonnet, S. (2016). Nitrogen isotopic evidence for a shift from nitrate- to diazotroph-fueled export production in the VAHINE mesocosm experiments. Biogeosciences, 13(16), 4645-4657. doi:10.5194/bg-13-4645-2016.

Item is


show Files




Knapp, Angela N.1, Author
Fawcett, Sarah E.1, Author
Martinez-Garcia, A.2, Author              
Leblond, Nathalie1, Author
Moutin, Thierry1, Author
Bonnet, Sophie1, Author
1external, ou_persistent22              
2Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_2237635              


Free keywords: -
 Abstract: In a coastal lagoon with a shallow, 25 m water column off the southwest coast of New Caledonia, large-volume (similar to 50 m(3)) mesocosm experiments were undertaken to track the fate of newly fixed nitrogen (N). The mesocosms were intentionally fertilized with 0.8 mu M dissolved inorganic phosphorus to stimulate diazotrophy. N isotopic evidence indicates that the dominant source of N fueling export production shifted from subsurface nitrate (NO3-) assimilated prior to the start of the 23-day experiments to N-2 fixation by the end of the experiments. While the delta N-15 of the sinking particulate N (PNsink) flux changed during the experiments, the delta N-15 of the suspended PN (PNsusp) and dissolved organic N (DON) pools did not. This is consistent with previous observations that the delta N-15 of surface ocean N pools is less responsive than that of PNsink to changes in the dominant source of new N to surface waters. In spite of the absence of detectable NO3- in the mesocosms, the delta N-15 of PNsink indicated that NO3- continued to fuel a significant fraction of export production (20 to 60 %) throughout the 23-day experiments, with N-2 fixation dominating export after about 2 weeks. The low rates of organic N export during the first 14 days were largely supported by NO3-, and phytoplankton abundance data suggest that sinking material primarily comprised large diatoms. Concurrent molecular and taxonomic studies indicate that the diazotroph community was dominated by diatom-diazotroph assemblages (DDAs) at this time. However, these DDAs represented a minor fraction (<5 %) of the total diatom community and contributed very little new N via N-2 fixation; they were thus not important for driving export production, either directly or indirectly. The unicellular cyanobacterial diazotroph, a Cyanothece-like UCYN-C, proliferated during the last phase of the experiments when N-2 fixation, primary production, and the flux of PNsink increased significantly, and delta N-15 budgets reflected a predominantly diazotrophic source of N fueling export. At this time, the export flux itself was likely dominated by the non-diazotrophic diatom, Cylindrotheca closterium, along with lesser contributions from other eukaryotic phytoplankton and aggregated UCYN-C cells, as well as fecal pellets from zooplankton. Despite comprising a small fraction of the total biomass, UCYN-C was largely responsible for driving export production during the last similar to 10 days of the experiments both directly (similar to 5 to 22% of PNsink) and through the rapid transfer of its newly fixed N to other phytoplankton; we infer that this newly fixed N was transferred rapidly through the dissolved N (including DON) and PNsusp pools. This inference reconciles previous observations of invariant oligotrophic surface ocean DON concentrations and delta N-15 with incubation studies showing that diazotrophs can release a significant fraction of their newly fixed N as some form of DON.


Language(s): eng - English
 Dates: 2016
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000383791400002
DOI: 10.5194/bg-13-4645-2016
 Degree: -



Legal Case


Project information


Source 1

Title: Biogeosciences
  Other : Biogeosciences
Source Genre: Journal
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 13 (16) Sequence Number: - Start / End Page: 4645 - 4657 Identifier: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006