Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A new adaptive method to filter terrestrial laser scanner point cloud using morphological filters and spectral information to conserve surface micro-topography

Rodriguez-Caballero, E., Afana, A., Chamizo, S., Sole-Benet, A., & Canton, Y. (2016). A new adaptive method to filter terrestrial laser scanner point cloud using morphological filters and spectral information to conserve surface micro-topography. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 141-148. doi:10.1016/j.isprsjprs.2016.04.004.

Item is

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Rodriguez-Caballero, E.1, Autor           
Afana, A.2, Autor
Chamizo, S.2, Autor
Sole-Benet, A.2, Autor
Canton, Y.2, Autor
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              
2external, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Terrestrial laser scanning (TLS), widely known as light detection and ranging (LiDAR) technology, is increasingly used to provide highly detailed digital terrain models (DTM) with millimetric precision and accuracy. In order to generate a DTM, TLS data has to be filtered from undesired spurious objects, such as vegetation, artificial structures, etc., Early filtering techniques, successfully applied to airborne laser scanning (ALS), fail when applied to TLS data, as they heavily smooth the terrain surface and do not retain their real morphology. In this article, we present a new methodology for filtering TLS data based on the geometric and radiometric properties of the scanned surfaces. This methodology was built on previous morphological filters that select the minimum point height within a sliding window as the real surface. However, contrary to those methods, which use a fixed window size, the new methodology operates under different spatial scales represented by different window sizes, and can be adapted to different types and sizes of plants. This methodology has been applied to two study areas of differing vegetation type and density. The accuracy of the final DTMs was improved by similar to 30% under dense canopy plants and over similar to 40% on the open spaces between plants, where other methodologies drastically underestimated the real surface heights. This resulted in more accurate representation of the soil surface and microtopography than up-to-date techniques, eventually having strong implications in hydrological and geomorphological studies. (C) 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2016
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000377312500012
DOI: 10.1016/j.isprsjprs.2016.04.004
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: ISPRS Journal of Photogrammetry and Remote Sensing
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam [u.a.] : Elsevier
Seiten: - Band / Heft: 117 Artikelnummer: - Start- / Endseite: 141 - 148 Identifikator: Anderer: 0924-2716
CoNE: https://pure.mpg.de/cone/journals/resource/0924-2716