English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

Pukite, J., & Wagner, T. (2016). Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy. Atmospheric Measurement Techniques Discussions, 9.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Pukite, J.1, Author           
Wagner, T.1, Author           
Affiliations:
1Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society, ou_1826293              

Content

show
hide
Free keywords: -
 Abstract: We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

Details

show
hide
Language(s):
 Dates: 2016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/amt-2015-313
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Measurement Techniques Discussions
  Other : Atmos. Meas. Tech. Discuss.
  Abbreviation : AMTD
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau : Copernicus
Pages: 57 Volume / Issue: 9 Sequence Number: - Start / End Page: - Identifier: Other: 1867-8610
CoNE: https://pure.mpg.de/cone/journals/resource/1867-8610