Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Variation of CCN activity during new particle formation events in the North China Plain

Ma, N., Zhao, C., Tao, J., Wu, Z., Kecorius, S., Wang, Z., et al. (2016). Variation of CCN activity during new particle formation events in the North China Plain. Atmospheric Chemistry and Physics Discussions, 16.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ma, N.1, Autor           
Zhao, Chunsheng2, Autor
Tao, Jiangchuan2, Autor
Wu, Zhijun2, Autor
Kecorius, Simonas2, Autor
Wang, Z.1, Autor           
Groess, Johannes2, Autor
Liu, Hongjian2, Autor
Bian, Yuxuan2, Autor
Kuang, Ye2, Autor
Teich, Monique2, Autor
Spindler, Gerald2, Autor
Mueller, Konrad2, Autor
van Pinxteren, Dominik2, Autor
Herrmann, Hartmut2, Autor
Hu, Min2, Autor
Wiedensohler, Alfred2, Autor
Affiliations:
1Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The aim of this investigation was to obtain a better understanding of the variability of the cloud condensation nuclei (CCN) activity during new particle formation (NPF) events in an anthropogenically polluted atmosphere of the North China Plain (NCP). We investigated the size-resolved activation ratio as well as particle number size distribution, hygroscopicity, and volatility during a 4-week intensive field experiment in summertime at a regional atmospheric observatory in Xianghe. Interestingly, based on a case study, two types of NPF events were found, in which the newly formed particles exhibited either a higher or a lower hygroscopicity. Therefore, the CCN activity of newly formed particles in different NPF events was largely different, indicating that a simple parameterization of particle CCN activity during NPF events over the NCP might lead to poor estimates of CCN number concentration (N-CCN). For a more accurate estimation of the potential N-CCN during NPF events, the variation of CCN activity has to be taken into account. Considering that a fixed activation ratio curve or critical diameter are usually used to calculate N-CCN, the influence of the variation of particle CCN activity on the calculation of N-CCN during NPF events was evaluated based on the two parameterizations. It was found that N-CCN might be underestimated by up to 30% if a single activation ratio curve (representative of the region and season) were to be used in the calculation; and might be underestimated by up to 50% if a fixed critical diameter (representative of the region and season) were used. Therefore, we suggest not using a fixed critical diameter in the prediction of N-CCN in NPF. If real-time CCN activity data are not available, using a proper fixed activation ratio curve can be an alternative but compromised choice.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: doi:10.5194/acp-2016-23
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Atmospheric Chemistry and Physics Discussions
  Kurztitel : Atmos. Chem. Phys. Discuss.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Seiten: 25 Band / Heft: 16 Artikelnummer: - Start- / Endseite: - Identifikator: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006