English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Exceptional Dewetting of Organic Semiconductor Films: The Case of Dinaphthothienothiophene (DNTT) at Dielectric Interfaces

Breuer, T., Karthäuser, A., Klemm, H., Genuzio, F., Peschel, G., Fuhrich, A., et al. (2017). Exceptional Dewetting of Organic Semiconductor Films: The Case of Dinaphthothienothiophene (DNTT) at Dielectric Interfaces. ACS Applied Materials and Interfaces, 9(9), 8384-8392. doi:10.1021/acsami.6b15902.

Item is

Files

show Files
hide Files
:
acs - 2016-12-21.pdf (Any fulltext), 8MB
 
File Permalink:
-
Name:
acs - 2016-12-21.pdf
Description:
-
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
2017
Copyright Info:
ACS
License:
-

Locators

show

Creators

show
hide
 Creators:
Breuer, Tobias1, Author           
Karthäuser, Andrea1, Author
Klemm, Hagen2, Author           
Genuzio, Francesca2, Author           
Peschel, Gina2, Author           
Fuhrich, Alexander2, Author           
Schmidt, Thomas2, Author           
Witte, Gregor1, Author           
Affiliations:
1Molekulare Festkörperphysik, Philipps-Universität Marburg, D-35032 Marburg, Germany, ou_persistent22              
2Chemical Physics, Fritz Haber Institute, Max Planck Society, ou_24022              

Content

show
hide
Free keywords: -
 Abstract: The novel organic semiconductor dinaphthothienothiophene (DNTT) has gained considerable interest because its large charge carrier mobility and distinct chemical robustness enable the fabrication of organic field effect transistors with remarkable long-term stability under ambient conditions. Structural aspects of DNTT films and their control, however, remain so far largely unexplored. Interestingly, the crystalline structure of DNTT is rather similar to that of the prototypical pentacene, for which the molecular orientation in crystalline thin films can be controlled by means of interface-mediated growth. Combining atomic force microscopy, near-edge X-ray absorption fine structure, photoelectron emission microscopy, and X-ray diffraction, we compare substrate-mediated control of molecular orientation, morphology, and wetting behavior of DNTT films on the prototypical substrates SiO2 and graphene as well as technologically relevant dielectric surfaces (SiO2 and metal oxides that were pretreated with self-assembled monolayers (SAMs)). We found an immediate three-dimensional growth on graphene substrates, while an interfacial wetting layer is formed on the other substrates. Rather surprisingly, we observe distinct temporal changes of DNTT thin films on SiO2 and the SAM-treated dielectric substrates, which exhibit a pronounced dewetting and island formation on time scales of minutes to hours, even under ambient conditions, leading to a breakup of the initially closed wetting layer. These findings are unexpected in view of the reported long-time stability of DNTT-based devices. Therefore, their future consideration is expected to enable the further improvement of such applications, especially since these structural modifications are equivalently observed also on the SAM-treated dielectric surfaces, which are commonly used in device processing.

Details

show
hide
Language(s):
 Dates: 2016-12-212017-02-202017-02-202017-03-08
 Publication Status: Issued
 Pages: 9
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1021/acsami.6b15902
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACS Applied Materials and Interfaces
  Abbreviation : ACS Appl. Mater. Interfaces
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, DC : American Chemical Society
Pages: 9 Volume / Issue: 9 (9) Sequence Number: - Start / End Page: 8384 - 8392 Identifier: ISSN: 1944-8244
CoNE: https://pure.mpg.de/cone/journals/resource/1944-8244