English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Aerosol arriving on the Caribbean island of Barbados: physical properties and origin

Wex, H., Dieckmann, K., Roberts, G. C., Conrath, T., Izaguirre, M. A., Hartmann, S., et al. (2016). Aerosol arriving on the Caribbean island of Barbados: physical properties and origin. Atmospheric Chemistry and Physics Discussions, 16.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Wex, Heike1, Author
Dieckmann, Katrin1, Author
Roberts, Greg C.1, Author
Conrath, Thomas1, Author
Izaguirre, Miguel A.1, Author
Hartmann, Susan1, Author
Herenz, Paul1, Author
Schaefer, Michael1, Author
Ditas, F.2, Author           
Schmeissner, Tina1, Author
Henning, Silvia1, Author
Wehner, Birgit1, Author
Siebert, Holger1, Author
Stratmann, Frank1, Author
Affiliations:
1external, ou_persistent22              
2Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826286              

Content

show
hide
Free keywords: -
 Abstract: The marine aerosol arriving at Barbados (Ragged Point) was characterized during two 3-week long measurement periods in November 2010 and April 2011, in the context of the measurement campaign CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados). Through a comparison between ground-based and airborne measurements it was shown that the former are representative of the marine boundary layer at least up to cloud base. In general, total particle number concentrations (N-total) ranged from as low as 100 up to 800 cm(-3), while number concentrations for cloud condensation nuclei (N-CCN) at a supersaturation of 0.26% ranged from some 10 to 600 cm(-3). N-total and N-CCN depended on the air mass origin. Three distinct types of air masses were found. One type showed elevated values for both N-total and N-CCN and could be attributed to long-range transport from Africa, by which biomass burning particles from the Sahel region and/or mineral dust particles from the Sahara were advected. The second and third type both had values for N-CCN below 200 cm(-3) and a clear minimum in the particle number size distribution (NSD) around 70 to 80 nm (Hoppel minimum). While for one of these two types the accumulation mode was dominating (albeit less so than for air masses advected from Africa), the Aitken mode dominated the other and contributed more than 50% of all particles. These Aitken mode particles likely were formed by new particle formation no more than 3 days prior to the measurements. Hygroscopicity of particles in the CCN size range was determined from CCN measurements to be kappa = 0.66 on average, which suggests that these particles contain mainly sulfate and do not show a strong influence from organic material, which might generally be the case for the months during which measurements were made. The average kappa could be used to derive N-CCN from measured number size distributions, showing that this is a valid approach to obtain N-CCN. Although the total particulate mass sampled on filters was found to be dominated by Na+ and Cl-, this was found to be contributed by a small number of large particles (> 500 nm, mostly even in the super-micron size range). Based on a three-modal fit, a sea spray mode observed in the NSDs was found to contribute 90% to the total particulate mass but only 4 to 10% to N-total and up to 15% to N-CCN. This is in accordance with finding no correlation between N-total and wind speed.

Details

show
hide
Language(s):
 Dates: 2016
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/acp-2016-244
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Chemistry and Physics Discussions
  Abbreviation : Atmos. Chem. Phys. Discuss.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : European Geophysical Society, Copernicus Publ.
Pages: 34 Volume / Issue: 16 Sequence Number: - Start / End Page: - Identifier: ISSN: 1680-7367
CoNE: https://pure.mpg.de/cone/journals/resource/111076360006006