Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Machine learning of accurate energy-conserving molecular force fields

Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I., Schütt, K. T., & Müller, K.-R. (2017). Machine learning of accurate energy-conserving molecular force fields. Science Advances, 3(5): e1603015. doi:10.1126/sciadv.1603015.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
chmiela.pdf (Verlagsversion), 2MB
Name:
chmiela.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
© The Authors

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Chmiela, Stefan1, Autor
Tkatchenko, Alexandre2, 3, Autor           
Sauceda, Huziel E.2, Autor           
Poltavsky, Igor3, Autor
Schütt, Kristof T.1, Autor
Müller, Klaus-Robert1, 4, Autor
Affiliations:
1Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany, ou_persistent22              
2Theory, Fritz Haber Institute, Max Planck Society, ou_634547              
3Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, ou_persistent22              
4Department of Brain and Cognitive Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 136-713, Korea, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Using conservation of energy - a fundamental property of closed classical and quantum mechanical systems - we develop an efficient gradient-domain machine learning (GDML) approach to construct accurate molecular force fields using a restricted number of samples from ab initio molecular dynamics (AIMD) trajectories. The GDML implementation is able to reproduce global potentialenergy surfaces of intermediate-size molecules with an accuracy of 0.3 kcal/mol-1 for energies and 1 kcal mol-1 Å̊−1 for atomic forces using only 1000 conformational geometries for training. We demonstrate this accuracy for AIMD trajectories of molecules, including benzene, toluene, naphthalene, ethanol, uracil, and aspirin. The challenge of constructing conservative force fields is accomplished in our work by learning in a Hilbert space of vector-valued functions that obey the law of energy conservation. The GDML approach enables quantitative molecular dynamics simulations for molecules at a fraction of cost of explicit AIMD calculations, thereby allowing the construction of efficient force fields with the accuracy and transferability of high-level ab initio methods.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-12-012017-03-072017-05-05
 Publikationsstatus: Online veröffentlicht
 Seiten: 7
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1126/sciadv.1603015
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Science Advances
  Andere : Sci. Adv.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington : AAAS
Seiten: 7 Band / Heft: 3 (5) Artikelnummer: e1603015 Start- / Endseite: - Identifikator: Anderer: 2375-2548
CoNE: https://pure.mpg.de/cone/journals/resource/2375-2548