English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase

Boll, M., Einsle, O., Ermler, U., & Kroneck, P. M. (2016). Structure and Function of the Unusual Tungsten Enzymes Acetylene Hydratase and Class II Benzoyl-Coenzyme A Reductase. Journal of Molecular Microbiology and Biotechnology, 26(1-3), 119-137. doi:10.1159/000440805.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Boll, Matthias1, Author
Einsle, Oliver2, Author
Ermler, Ulrich3, Author                 
Kroneck, Peter M.H.4, Author
Affiliations:
1Fakultät für Biologie/Mikrobiologie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg , ou_persistent22              
2Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, ou_persistent22              
3Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Max Planck Society, ou_2068290              
4Fachbereich Biologie, Universität Konstanz, Konstanz and Computational Biochemistry, Universität Bayreuth, Bayreuth, ou_persistent22              

Content

show
hide
Free keywords: Acetylene hydratase; Benzoyl-coenzyme A reductase; Tungsten enzymes
 Abstract: In biology, tungsten (W) is exclusively found in microbial enzymes bound to a bis-pyranopterin cofactor (bis-WPT). Previously known W enzymes catalyze redox oxo/hydroxyl transfer reactions by directly coordinating their substrates or products to the metal. They comprise the W-containing formate/formylmethanofuran dehydrogenases belonging to the dimethyl sulfoxide reductase (DMSOR) family and the aldehyde:ferredoxin oxidoreductase (AOR) families, which form a separate enzyme family within the Mo/W enzymes. In the last decade, initial insights into the structure and function of two unprecedented W enzymes were obtained: the acetaldehyde forming acetylene hydratase (ACH) belongs to the DMSOR and the class II benzoyl-coenzyme A (CoA) reductase (BCR) to the AOR family. The latter catalyzes the reductive dearomatization of benzoyl-CoA to a cyclic diene. Both are key enzymes in the degradation of acetylene (ACH) or aromatic compounds (BCR) in strictly anaerobic bacteria. They are unusual in either catalyzing a nonredox reaction (ACH) or a redox reaction without coordinating the substrate or product to the metal (BCR). In organic chemical synthesis, analogous reactions require totally nonphysiological conditions depending on Hg 2+ (acetylene hydration) or alkali metals (benzene ring reduction). The structural insights obtained pave the way for biological or biomimetic approaches to basic reactions in organic chemistry.

Details

show
hide
Language(s): eng - English
 Dates: 2016-03-102016-03
 Publication Status: Issued
 Pages: 19
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1159/000440805
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Molecular Microbiology and Biotechnology
  Other : J. Mol. Microbiol. Biotechnol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Wymondham, Norfolk, UK : Horizon Scientific Press
Pages: - Volume / Issue: 26 (1-3) Sequence Number: - Start / End Page: 119 - 137 Identifier: ISSN: 1464-1801
CoNE: https://pure.mpg.de/cone/journals/resource/110975506072233