English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Steering cell migration by alternating blebs and actin-rich protrusions

Diz-Munoz, A., Romanczuk, P., Yu, W., Bergert, M., Ivanovitch, K., Salbreux, G., et al. (2016). Steering cell migration by alternating blebs and actin-rich protrusions. BMC Biology, 14: 74. doi:10.1186/s12915-016-0294-x.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Diz-Munoz, Alba1, Author
Romanczuk, Pawel2, Author           
Yu, Weimiao1, Author
Bergert, Martin1, Author
Ivanovitch, Kenzo1, Author
Salbreux, Guillaume2, Author           
Heisenberg, Carl-Philipp1, Author
Paluch, Ewa K.1, Author
Affiliations:
1external, ou_persistent22              
2Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              

Content

show
hide
Free keywords: -
 MPIPKS: Living matter
 Abstract: Background: High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood.
Results: Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision.
Conclusions: Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.

Details

show
hide
Language(s):
 Dates: 2016-09-022016-09-02
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000382458900001
DOI: 10.1186/s12915-016-0294-x
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Berlin ; Heidelberg : Springer
Pages: - Volume / Issue: 14 Sequence Number: 74 Start / End Page: - Identifier: ISSN: 1741-7007
CoNE: https://pure.mpg.de/cone/journals/resource/111071069889000