English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Shock wave studies of the pyrolysis of fluorocarbon oxygenates. I. The thermal dissociation of C3F6O and CF3COF.

Cobos, C. J., Hintzer, K., Sölter, L., Tellbach, E., Thaler, A., & Troe, J. (2017). Shock wave studies of the pyrolysis of fluorocarbon oxygenates. I. The thermal dissociation of C3F6O and CF3COF. Physical Chemistry Chemical Physics, 19(4), 3151-3158. doi:10.1039/c6cp06816b.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002C-E12A-C Version Permalink: http://hdl.handle.net/21.11116/0000-0001-1D1B-2
Genre: Journal Article

Files

show Files
hide Files
:
2417333.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
2417333.pdf
Description:
-
Visibility:
Restricted (Max Planck Institute for Biophysical Chemistry (Karl Friedrich Bonhoeffer Institute), Göttingen; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Cobos, C. J., Author
Hintzer, K., Author
Sölter, L.1, Author              
Tellbach, E.2, Author              
Thaler, A., Author
Troe, J.1, Author              
Affiliations:
1Emeritus Group of Spectroscopy and Photochemical Kinetics, MPI for Biophysical Chemistry, Max Planck Society, ou_578625              
2Department of Dynamics at Surfaces, MPI for Biophysical Chemistry, Max Planck Society, ou_578600              

Content

show
hide
Free keywords: -
 Abstract: The thermal decomposition of hexafluoropropylene oxide, C3F6O, to perfluoroacetyl fluoride, CF3COF, and CF2 has been studied in shock waves highly diluted in Ar between 630 and 1000 K. The measured rate constant k(1) = 1.1 x 10(14) exp(-162(+4) kJ mol(-1)/RT) s(-1) agrees well with literature data and modelling results. Using the reaction as a precursor, equimolar mixtures of CF3COF and CF2 were further heated. Combining experimental observations with theoretical modelling (on the CBS-QB3 and G(4)MP(2) ab initio composite levels), CF3COF is shown to dissociate on two channels, either leading to CF2 + COF2 or to CF3 + FCO. By monitoring the CF2 signals, the branching ratio was determined between 1400 and 1900 K. The high pressure rate constants for the two channels were obtained from theoretical modelling as k(5,infinity)(CF3COF -> CF2 + COF2) = 7.1 x 10(14)exp(-320 kJ mol(-1)/RT) s(-1) and k(6),(infinity)(CF3COF -> CF3 + FCO) = 3.9 x 10(15) exp(-355 kJ mol(-1)/RT) s(-1). The experimental results obtained at [Ar] approximate to 5 x 10(-6) mol cm(-3) were consistent with modelling results, showing that the reaction is in the falloff range of the unimolecular dissociation. The mechanism of secondary reactions following CF3COF dissociation has been analysed as well.

Details

show
hide
Language(s): eng - English
 Dates: 2016-12-192017-01-28
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1039/c6cp06816b
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Chemistry Chemical Physics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 19 (4) Sequence Number: - Start / End Page: 3151 - 3158 Identifier: -