Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Spontaneous concentrations of solids through two-way drag forces between gas and sedimenting particles.

Lambrechts, M., Johansen, A., Capelo, H. L., Blum, J., & Bodenschatz, E. (2016). Spontaneous concentrations of solids through two-way drag forces between gas and sedimenting particles. Astronomy and Astrophysics, 591: A133. doi:10.1051/0004-6361/201526272.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Lambrechts, M., Autor
Johansen, A., Autor
Capelo, H. L.1, Autor           
Blum, J., Autor
Bodenschatz, Eberhard1, Autor                 
Affiliations:
1Laboratory for Fluid Dynamics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063287              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Hydrodynamics; Instabilities; Turbulence; Methods: numerical; Planets and satellites: formation; Protoplanetary disks
 Zusammenfassung: The behaviour of sedimenting particles depends on the dust-to-gas ratio of the fluid. Linear stability analysis shows that solids settling in the Epstein drag regime would remain homogeneously distributed in non-rotating incompressible fluids, even when dust-to-gas ratios reach unity. However, the nonlinear evolution has not been probed before. Here, we present numerical calculations indicating that, in a particle-dense mixture, solids spontaneously mix out of the fluid and form swarms that are overdense in particles by at least a factor 10. The instability is caused by mass-loaded regions locally breaking the equilibrium background stratification. The driving mechanism depends on nonlinear perturbations of the background flow and shares some similarity to the streaming instability in accretion discs. The resulting particle-rich swarms may stimulate particle growth by coagulation. In the context of protoplanetary discs, the instability could be relevant for aiding small particles to settle to the midplane in the outer disc. Inside the gas envelopes of protoplanets, enhanced settling may lead to a reduced dust opacity, which facilitates the contraction of the envelope. We show that the relevant physical set up can be recreated in a laboratory setting. This will allow our numerical calculations to be investigated experimentally in the future.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-06-292016-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1051/0004-6361/201526272
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Astronomy and Astrophysics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: 14 Band / Heft: 591 Artikelnummer: A133 Start- / Endseite: - Identifikator: -