English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Vertical Line Nodes in the Superconducting Gap Structure of Sr2RuO4

Hassinger, E., Bourgeois-Hope, P., Taniguchi, H., de Cotret, S. R., Grissonnanche, G., Anwar, M. S., et al. (2017). Vertical Line Nodes in the Superconducting Gap Structure of Sr2RuO4. Physical Review X, 7(1): 011032, pp. 1-9. doi:10.1103/PhysRevX.7.011032.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hassinger, E.1, Author           
Bourgeois-Hope, P.2, Author
Taniguchi, H.2, Author
de Cotret, S. Rene2, Author
Grissonnanche, G.2, Author
Anwar, M. S.2, Author
Maeno, Y.2, Author
Doiron-Leyraud, N.2, Author
Taillefer, Louis2, Author
Affiliations:
1Physics of Unconventional Metals and Superconductors, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_2466700              
2External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: There is strong experimental evidence that the superconductor Sr-2 RuO4 has a chiral p-wave order parameter. This symmetry does not require that the associated gap has nodes, yet specific heat, ultrasound, and thermal conductivity measurements indicate the presence of nodes in the superconducting gap structure of Sr2RuO4. Theoretical scenarios have been proposed to account for the existence of deep minima or accidental nodes (minima tuned to zero or below by material parameters) within a p-wave state. Other scenarios propose chiral d-wave and f-wave states, with horizontal and vertical line nodes, respectively. To elucidate the nodal structure of the gap, it is essential to know whether the lines of nodes (or minima) are vertical (parallel to the tetragonal c axis) or horizontal (perpendicular to the c axis). Here, we report thermal conductivity measurements on single crystals of Sr2RuO4 down to 50 mK for currents parallel and perpendicular to the c axis. We find that there is substantial quasiparticle transport in the T =0 limit for both current directions. A magnetic field H immediately excites quasiparticles with velocities both in the basal plane and in the c direction. Our data down to T-c/30 and down to H-c2 /100 show no evidence that the nodes are in fact deep minima. Relative to the normal state, the thermal conductivity of the superconducting state is found to be very similar for the two current directions, from H = 0 to H =H-c2. These findings show that the gap structure of Sr 2 RuO 4 consists of vertical line nodes. This rules out a chiral d-wave state. Given that the c-axis dispersion (warping) of the Fermi surface in Sr2RuO4 varies strongly from sheet to sheet, the small a -c anisotropy suggests that the line nodes are present on all three sheets of the Fermi surface. If imposed by symmetry, vertical line nodes would be inconsistent with a p-wave order parameter for Sr2RuO4. To reconcile the gap structure revealed by our data with a p-wave state, a mechanism must be found that produces accidental line nodes in Sr2RuO4.

Details

show
hide
Language(s): eng - English
 Dates: 2017-03-152017-03-15
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000396267500001
DOI: 10.1103/PhysRevX.7.011032
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review X
  Abbreviation : Phys. Rev. X
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : American Physical Society
Pages: - Volume / Issue: 7 (1) Sequence Number: 011032 Start / End Page: 1 - 9 Identifier: Other: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308