Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Smart Broadcasting: Do you Want to Be Seen?

Karimi, M. R., Tavakoli, E., Farajtabar, M., Song, L., & Gomez Rodriguez, M. (2016). Smart Broadcasting: Do you Want to Be Seen? Retrieved from http://arxiv.org/abs/1605.06855.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
arXiv:1605.06855.pdf (Preprint), 895KB
Name:
arXiv:1605.06855.pdf
Beschreibung:
File downloaded from arXiv at 2017-04-12 13:41 To appear in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco (CA, USA), 2016
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Karimi, Mohammad Reza1, Autor
Tavakoli, Erfan1, Autor
Farajtabar, Mehrdad1, Autor
Song, Le1, Autor
Gomez Rodriguez, Manuel2, Autor           
Affiliations:
1External Organizations, ou_persistent22              
2Group M. Gomez Rodriguez, Max Planck Institute for Software Systems, Max Planck Society, ou_2105290              

Inhalt

einblenden:
ausblenden:
Schlagwörter: cs.SI,Computer Science, Learning, cs.LG,Statistics, Machine Learning, stat.ML
 Zusammenfassung: Many users in online social networks are constantly trying to gain attention from their followers by broadcasting posts to them. These broadcasters are likely to gain greater attention if their posts can remain visible for a longer period of time among their followers' most recent feeds. Then when to post? In this paper, we study the problem of smart broadcasting using the framework of temporal point processes, where we model users feeds and posts as discrete events occurring in continuous time. Based on such continuous-time model, then choosing a broadcasting strategy for a user becomes a problem of designing the conditional intensity of her posting events. We derive a novel formula which links this conditional intensity with the visibility of the user in her followers' feeds. Furthermore, by exploiting this formula, we develop an efficient convex optimization framework for the when-to-post problem. Our method can find broadcasting strategies that reach a desired visibility level with provable guarantees. We experimented with data gathered from Twitter, and show that our framework can consistently make broadcasters' post more visible than alternatives.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2016-05-222016
 Publikationsstatus: Online veröffentlicht
 Seiten: 17 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1605.06855
URI: http://arxiv.org/abs/1605.06855
BibTex Citekey: KarimiArXiv
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: