Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

Wetzel, L., Jörg, D. J., Pollakis, A., Rave, W., Fettweis, G., & Jülicher, F. (2017). Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment. PLoS One, 12(2): e0171590. doi:10.1371/journal.pone.0171590.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Wetzel, Lucas1, Autor           
Jörg, David J.1, Autor           
Pollakis, Alexandros2, Autor
Rave, Wolfgang2, Autor
Fettweis, Gerhard2, Autor
Jülicher, Frank1, Autor           
Affiliations:
1Max Planck Institute for the Physics of Complex Systems, Max Planck Society, ou_2117288              
2external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 MPIPKS: Deterministic dynamics
 Zusammenfassung: Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2017-02-162017-02-16
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000394424500041
DOI: 10.1371/journal.pone.0171590
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: PLoS One
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: San Francisco, CA : Public Library of Science
Seiten: - Band / Heft: 12 (2) Artikelnummer: e0171590 Start- / Endseite: - Identifikator: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850