Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Materials Nanoarchitecturing via Cation-Mediated Protein Assembly: Making Limpet Teeth without Mineral

Ukmar-Godec, T., Bertinetti, L., Dunlop, J. W. C., Godec, A., Grabiger, M. A., Masic, A., et al. (2017). Materials Nanoarchitecturing via Cation-Mediated Protein Assembly: Making Limpet Teeth without Mineral. Advanced Materials, 29(27): 1701171. doi:10.1002/adma.201701171.

Item is

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2442116.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
2442116.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Ukmar-Godec, Tina1, Autor           
Bertinetti, Luca2, Autor           
Dunlop, John W. C.3, Autor           
Godec, Aljaž, Autor
Grabiger, Michal A.1, Autor           
Masic, Admir, Autor
Nguyen, Huynh3, Autor
Zlotnikov, Igor, Autor
Zaslansky, Paul, Autor
Faivre, Damien1, Autor           
Affiliations:
1Damien Faivre, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863290              
2Luca Bertinetti (Indep. Res.), Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2231637              
3John Dunlop, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863291              

Inhalt

einblenden:
ausblenden:
Schlagwörter: limpet teeth, mechanical properties, nanoindentation, radula, structure–function relationship
 Zusammenfassung: Teeth are designed to deliver high forces while withstanding the generated stresses. Aside from isolated mineral-free exception (e.g., marine polychaetes and squids), minerals are thought to be indispensable for tooth-hardening and durability. Here, the unmineralized teeth of the giant keyhole limpet (Megathura crenulata) are shown to attain a stiffness, which is twofold higher than any known organic biogenic structures. In these teeth, protein and chitin fibers establish a stiff compact outer shell enclosing a less compact core. The stiffness and its gradients emerge from a concerted interaction across multiple length-scales: packing of hydrophobic proteins and folding into secondary structures mediated by Ca2+ and Mg2+ together with a strong spatial control in the local fiber orientation. These results integrating nanoindentation, acoustic microscopy, and finite-element modeling for probing the tooth's mechanical properties, spatially resolved small- and wide-angle X-ray scattering for probing the material ordering on the micrometer scale, and energy-dispersive X-ray scattering combined with confocal Raman microscopy to study structural features on the molecular scale, reveal a nanocomposite structure hierarchically assembled to form a versatile damage-tolerant protein-based tooth, with a stiffness similar to mineralized mammalian bone, but without any mineral.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2017-05-092017-07-19
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/adma.201701171
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Materials
  Andere : Adv. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH
Seiten: - Band / Heft: 29 (27) Artikelnummer: 1701171 Start- / Endseite: - Identifikator: ISSN: 0935-9648