Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Hot Electrons Regain Coherence in Semiconducting Nanowires

Reiner, J., Nayak, A. K., Avraham, N., Norris, A., Yan, B., Fulga, I. C., et al. (2017). Hot Electrons Regain Coherence in Semiconducting Nanowires. Physical Review X, 7(2): 021016, pp. 1-16. doi:10.1103/PhysRevX.7.021016.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Reiner, Jonathan1, Autor
Nayak, Abhay Kumar1, Autor
Avraham, Nurit1, Autor
Norris, Andrew1, Autor
Yan, Binghai2, Autor           
Fulga, Ion Cosma1, Autor
Kang, Jung-Hyun1, Autor
Karzig, Toesten1, Autor
Shtrikman, Hadas1, Autor
Beidenkopf, Haim1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Binghai Yan, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863427              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: The higher the energy of a particle is above equilibrium, the faster it relaxes because of the growing phase space of available electronic states it can interact with. In the relaxation process, phase coherence is lost, thus limiting high-energy quantum control and manipulation. In one-dimensional systems, high relaxation rates are expected to destabilize electronic quasiparticles. Here, we show that the decoherence induced by relaxation of hot electrons in one-dimensional semiconducting nanowires evolves non-monotonically with energy such that above a certain threshold hot electrons regain stability with increasing energy. We directly observe this phenomenon by visualizing, for the first time, the interference patterns of the quasi-one-dimensional electrons using scanning tunneling microscopy. We visualize the phase coherence length of the one-dimensional electrons, as well as their phase coherence time, captured by crystallographic Fabry-Perot resonators. A remarkable agreement with a theoretical model reveals that the nonmonotonic behavior is driven by the unique manner in which one-dimensional hot electrons interact with the cold electrons occupying the Fermi sea. This newly discovered relaxation profile suggests a high-energy regime for operating quantum applications that necessitate extended coherence or long thermalization times, and may stabilize electronic quasiparticles in one dimension.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-05-052017-05-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000400673300002
DOI: 10.1103/PhysRevX.7.021016
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review X
  Kurztitel : Phys. Rev. X
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, NY : American Physical Society
Seiten: - Band / Heft: 7 (2) Artikelnummer: 021016 Start- / Endseite: 1 - 16 Identifikator: Anderer: 2160-3308
CoNE: https://pure.mpg.de/cone/journals/resource/2160-3308