English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Measuring thin films using quantitative frustrated total internal reflection (FTIR)

Shirota, M., van Limbeek, M. A. J., Lohse, D., & Sun, C. (2017). Measuring thin films using quantitative frustrated total internal reflection (FTIR). The European Physical Journal E, 40(5): 54. doi:10.1140/epje/i2017-11542-4.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Shirota, M., Author
van Limbeek, M. A. J., Author
Lohse, Detlef1, Author           
Sun, C., Author
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Content

show
hide
Free keywords: -
 Abstract: In the study of interactions between liquids and solids, an accurate measurement of the film thickness between the two media is essential to study the dynamics. As interferometry is restricted by the wavelength of the light source used, recent studies of thinner films have prompted the use of frustrated total internal reflection (FTIR). In many studies the assumption of a simple exponential decay of the intensity with film thickness was used. In the present study we highlight that this model does not satisfy the Fresnel equations and thus gives an underestimation of the films. We show that the multiple reflections and transmissions at both the upper and the lower interfaces of the film must be taken into account to accurately describe the measured intensity. In order to quantitatively validate the FTIR technique, we measured the film thickness of the air gap between a convex lens of known geometry and a flat surface and obtain excellent agreement. Furthermore, we also found that we can accurately measure the elastic deformations of the lens under loads by comparing them with the results of the Herzian theory.

Details

show
hide
Language(s): eng - English
 Dates: 2017-05-092017-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1140/epje/i2017-11542-4
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The European Physical Journal E
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 9 Volume / Issue: 40 (5) Sequence Number: 54 Start / End Page: - Identifier: -