日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

Dral, P. O., Owens, A., Yurchenko, S. N., & Thiel, W. (2017). Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. The Journal of Chemical Physics, 146(24):. doi:10.1063/1.4989536.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Dral, Pavlo O.1, 著者           
Owens, Alec1, 2, 著者           
Yurchenko, Sergei N.2, 著者
Thiel, Walter1, 著者           
所属:
1Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              
2Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom, ou_persistent22              

内容説明

表示:
非表示:
キーワード: -
 要旨: We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2017-02-022017-06-092017-06-272017-06-28
 出版の状態: 出版
 ページ: 11
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1063/1.4989536
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: The Journal of Chemical Physics
  省略形 : J. Chem. Phys.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Woodbury, N.Y. : American Institute of Physics
ページ: - 巻号: 146 (24) 通巻号: 244108 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226