Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels

Dral, P. O., Owens, A., Yurchenko, S. N., & Thiel, W. (2017). Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. The Journal of Chemical Physics, 146(24): 244108. doi:10.1063/1.4989536.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Dral, Pavlo O.1, Autor           
Owens, Alec1, 2, Autor           
Yurchenko, Sergei N.2, Autor
Thiel, Walter1, Autor           
Affiliations:
1Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445590              
2Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2017-02-022017-06-092017-06-272017-06-28
 Publikationsstatus: Erschienen
 Seiten: 11
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1063/1.4989536
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Chemical Physics
  Kurztitel : J. Chem. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, N.Y. : American Institute of Physics
Seiten: - Band / Heft: 146 (24) Artikelnummer: 244108 Start- / Endseite: - Identifikator: ISSN: 0021-9606
CoNE: https://pure.mpg.de/cone/journals/resource/954922836226