English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  On optimal spatial filtering for the detection of phase coupling in multivariate neural recordings

Waterstraat, G., Curio, G., & Nikulin, V. V. (2017). On optimal spatial filtering for the detection of phase coupling in multivariate neural recordings. NeuroImage, 157, 331-340. doi:10.1016/j.neuroimage.2017.06.025.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002D-88F7-5 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-B44E-B
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Waterstraat, Gunnar1, Author
Curio, G.1, Author
Nikulin, Vadim V.1, 2, 3, Author              
Affiliations:
1Department of Neurology, Charité University Medicine Berlin, Germany, ou_persistent22              
2Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              
3Centre for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia, ou_persistent22              

Content

show
hide
Free keywords: Optimization; Spatial filtering; Phase coupling; Neuronal oscillations; EEG; Reaction times
 Abstract: Neuronal oscillations synchronize processing in the brain over large spatiotemporal scales and thereby facilitate integration of individual functional modules. Up to now, the relation between the phases of neuronal oscillations and behavior or perception has mainly been analyzed in sensor space of multivariate EEG/MEG recordings. However, sensor-space analysis distorts the topographies of the underlying neuronal sources and suffers from low signal-to-noise ratio. Instead, we propose an optimized source reconstruction approach (Phase Coupling Optimization, PCO).

Details

show
hide
Language(s): eng - English
 Dates: 2017-03-202017-06-102017-06-132017-08-15
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1016/j.neuroimage.2017.06.025
PMID: 28619653
Other: Epub 2017
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : -
Grant ID : 01GQ1001C
Funding program : -
Funding organization : German Federal Ministry of Education and Research (BMBF), Bernstein Center for Computational Neuroscience, Berlin
Project name : -
Grant ID : -
Funding program : Russian Academic Excellence Project 5–100
Funding organization : Ministry of Science and Higher Education of the Russian Federation

Source 1

show
hide
Title: NeuroImage
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Orlando, FL : Academic Press
Pages: - Volume / Issue: 157 Sequence Number: - Start / End Page: 331 - 340 Identifier: ISSN: 1053-8119
CoNE: /journals/resource/954922650166