Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Discovering Reliable Approximate Functional Dependencies

Mandros, P., Boley, M., & Vreeken, J. (2017). Discovering Reliable Approximate Functional Dependencies. Retrieved from http://arxiv.org/abs/1705.09391.

Item is

Dateien

ausblenden: Dateien
:
arXiv:1705.09391.pdf (Preprint), 867KB
Name:
arXiv:1705.09391.pdf
Beschreibung:
File downloaded from arXiv at 2017-07-10 12:23 Accepted: In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), August 13-17, 2017, Halifax, NS, Canada
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Mandros, Panagiotis1, Autor           
Boley, Mario1, Autor           
Vreeken, Jilles1, Autor           
Affiliations:
1Databases and Information Systems, MPI for Informatics, Max Planck Society, ou_24018              

Inhalt

ausblenden:
Schlagwörter: Computer Science, Databases, cs.DB,Computer Science, Artificial Intelligence, cs.AI,Computer Science, Information Theory, cs.IT,Mathematics, Information Theory, math.IT
 Zusammenfassung: Given a database and a target attribute of interest, how can we tell whether there exists a functional, or approximately functional dependence of the target on any set of other attributes in the data? How can we reliably, without bias to sample size or dimensionality, measure the strength of such a dependence? And, how can we efficiently discover the optimal or $\alpha$-approximate top-$k$ dependencies? These are exactly the questions we answer in this paper. As we want to be agnostic on the form of the dependence, we adopt an information-theoretic approach, and construct a reliable, bias correcting score that can be efficiently computed. Moreover, we give an effective optimistic estimator of this score, by which for the first time we can mine the approximate functional dependencies from data with guarantees of optimality. Empirical evaluation shows that the derived score achieves a good bias for variance trade-off, can be used within an efficient discovery algorithm, and indeed discovers meaningful dependencies. Most important, it remains reliable in the face of data sparsity.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2017-05-252017-06-182017
 Publikationsstatus: Online veröffentlicht
 Seiten: 16 p.
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: arXiv: 1705.09391
URI: http://arxiv.org/abs/1705.09391
BibTex Citekey: DBLP:journals/corr/MandrosBV17
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: