English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model

Porada, P., Pöschl, U., Kleidon, A., Beer, C., & Weber, B. (2017). Estimating global nitrous oxide emissions by lichens and bryophytes with a process-based productivity model. Biogeosciences, 14(6), 1593-1602. doi:10.5194/bg-14-1593-2017.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Porada, Philipp1, Author
Pöschl, U.2, Author           
Kleidon, Axel1, Author
Beer, Christian1, Author
Weber, B.2, Author           
Affiliations:
1external, ou_persistent22              
2Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826290              

Content

show
hide
Free keywords: -
 Abstract: Nitrous oxide is a strong greenhouse gas and atmospheric ozone-depleting agent which is largely emitted by soils. Recently, lichens and bryophytes have also been shown to release significant amounts of nitrous oxide. This finding relies on ecosystem-scale estimates of net primary productivity of lichens and bryophytes, which are converted to nitrous oxide emissions by empirical relationships between productivity and respiration, as well as between respiration and nitrous oxide release. Here we obtain an alternative estimate of nitrous oxide emissions which is based on a global process-based non-vascular vegetation model of lichens and bryophytes. The model quantifies photosynthesis and respiration of lichens and bryophytes directly as a function of environmental conditions, such as light and temperature. Nitrous oxide emissions are then derived from simulated respiration assuming a fixed relationship between the two fluxes. This approach yields a global estimate of 0.27 (0.19–0.35) (Tg N2O) year−1 released by lichens and bryophytes. This is lower than previous estimates but corresponds to about 50 % of the atmospheric deposition of nitrous oxide into the oceans or 25 % of the atmospheric deposition on land. Uncertainty in our simulated estimate results from large variation in emission rates due to both physiological differences between species and spatial heterogeneity of climatic conditions. To constrain our predictions, combined online gas exchange measurements of respiration and nitrous oxide emissions may be helpful.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000398193400001
DOI: 10.5194/bg-14-1593-2017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biogeosciences
  Other : Biogeosciences
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau, Germany : Copernicus GmbH on behalf of the European Geosciences Union
Pages: - Volume / Issue: 14 (6) Sequence Number: - Start / End Page: 1593 - 1602 Identifier: ISSN: 1726-4170
CoNE: https://pure.mpg.de/cone/journals/resource/111087929276006