English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate

Barcikowska, M. J., Kapnick, S. B., & Feser, F. (2017). Impact of large-scale circulation changes in the North Atlantic sector on the current and future Mediterranean winter hydroclimate. Climate Dynamics. doi:10.1007/s00382-017-3735-5.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Barcikowska, Monika J., Author
Kapnick, Sarah B., Author
Feser, Frauke1, Author           
Affiliations:
1B 4 - Regional Storms and their Marine Impacts, Research Area B: Climate Manifestations and Impacts, The CliSAP Cluster of Excellence, External Organizations, ou_1863484              

Content

show
hide
Free keywords: -
 Abstract: The Mediterranean region, located in the transition zone between the dry subtropical and wet European mid-latitude climate, is very sensitive to changes in the global mean climate state. Projecting future changes of the Mediterranean hydroclimate under global warming therefore requires dynamic climate models to reproduce the main mechanisms controlling regional hydroclimate with sufficiently high resolution to realistically simulate climate extremes. To assess future winter precipitation changes in the Mediterranean region we use the Geophysical Fluid Dynamics Laboratory high-resolution general circulation model for control simulations with pre-industrial greenhouse gas and aerosol concentrations which are compared to future scenario simulations. Here we show that the coupled model is able to reliably simulate the large-scale winter circulation, including the North Atlantic Oscillation and Eastern Atlantic patterns of variability, and its associated impacts on the mean Mediterranean hydroclimate. The model also realistically reproduces the regional features of daily heavy rainfall, which are absent in lower-resolution simulations. A five-member future projection ensemble, which assumes comparatively high greenhouse gas emissions (RCP8.5) until 2100, indicates a strong winter decline in Mediterranean precipitation for the coming decades. Consistent with dynamical and thermodynamical consequences of a warming atmosphere, derived changes feature a distinct bipolar behavior, i.e. wetting in the north---and drying in the south. Changes are most pronounced over the northwest African coast, where the projected winter precipitation decline reaches 40% of present values. Despite a decrease in mean precipitation, heavy rainfall indices show drastic increases across most of the Mediterranean, except the North African coast, which is under the strong influence of the cold Canary Current.

Details

show
hide
Language(s): eng - English
 Dates: 2017-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s00382-017-3735-5
BibTex Citekey: Barcikowska2017
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Climate Dynamics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: ISSN: 1432-0894