English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Hyperekplexia mutation of glycine receptors: decreased gating efficacy with altered binding thermodynamics

Maksay, G., Biró, T., & Laube, B. (2002). Hyperekplexia mutation of glycine receptors: decreased gating efficacy with altered binding thermodynamics. Biochemical Pharmacology, 64(2), 285-288.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Maksay, G.1, Author           
Biró, T., Author
Laube, B.1, Author           
Affiliations:
1Neurochemistry Department, Max Planck Institute for Brain Research, Max Planck Society, ou_2461704              

Content

show
hide
Free keywords: recombinant glycine receptors; hyperekplexia mutation; thermodynamics of binding; strychnine; partial agonists; taurine
 Abstract: [H-3]Strychnine binding was studied to recombinant human alpha(1) and the hyperekplexia mutant alpha(1)R271L glycine receptors (GlyRs) transiently expressed in human embryonic kidney (HEK)-293 cell cultures at 0, 18 and 37. The alpha(1)R271L mutation did not affect the linear van't Hoff plots of the exothermic binding of the antagonist [H- 3]strychnine while it turned taurine into an antagonist with exothermic binding. The inhibition constants of the agonist glycine showed opposite temperature dependence on alpha(1) GlyRs, corresponding to endothermic binding driven by large entropic increases. The temperature dependence of displacement by the partial agonists taurine on a, GlyRs and glycine on alpha(1)R271L GlyRs was biphasic reflecting negative heat capacity changes, dehydration changes and/or a complex binding mechanism. The thermodynamic discrimination of efficacy is valid for native rat spinal and recombinant human GlyRs. The alpha(1)R271L mutation impairs the transduction mechanism and distorts gating of GlyRs. Thereby it reduces the potency and efficacy of agonists and affects their thermodynamic parameters of binding. The hyperekplexia mutation offers a model system to demonstrate the correlation among pathophysiology, gating efficacy and binding thermodynamics of GlyRs. (C) 2002 Elsevier Science Inc. All rights reserved.

Details

show
hide
Language(s): eng - English
 Dates: 2002
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 10558
ISI: 000177233400015
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biochemical Pharmacology
  Alternative Title : Biochem. Pharmacol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 64 (2) Sequence Number: - Start / End Page: 285 - 288 Identifier: ISSN: 0006-2952