English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow

Bourtsoukidis, E., Helleis, F., Tomsche, L., Fischer, H., Hofmann, R., Lelieveld, J., et al. (2017). An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow. Atmospheric Measurement Techniques Discussions, 10.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bourtsoukidis, E.1, Author           
Helleis, F.2, Author           
Tomsche, L.1, Author           
Fischer, H1, Author           
Hofmann, R.1, Author           
Lelieveld, J.1, Author           
Williams, J.1, Author           
Affiliations:
1Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society, ou_1826285              
2Max Planck Institute for Chemistry, Max Planck Society, ou_1826284              

Content

show
hide
Free keywords: -
 Abstract: Volatile organic compounds (VOC) are important for global air quality and oxidation processes in the troposphere. In addition to ground-based measurements, the chemical evolution of such species during transport can be studied by performing in-situ airborne measurements. Generally, aircraft instrumentation needs to be sensitive, robust and sample at higher frequency than ground based systems while their construction must comply with rigorous mechanical and electrical safety standards. Here, we present a new System for Organic Fast Identification Analysis (SOFIA), which is a custom built fast Gas Chromatography – Mass Spectrometry (GC-MS) system with a time resolution of 2–3 min. The relatively high time resolution is the result of a novel cryogenic pre-concentration unit which rapidly cools (~ 6 °C/s) the sample enrichment traps to −140 °C, and a new chromatographic oven designed for rapid cooling rates (~ 30 °C/s) and subsequent thermal stabilization. SOFIA was installed in the High Altitude and Long Range Research Aircraft (HALO) for the Oxidation Mechanism Observations (OMO) campaign in August 2015, aimed at investigating the Asian monsoon pollution outflow in the tropical upper troposphere. In addition to a comprehensive instrument characterization we present an example monsoon plume crossing flight as a case study to demonstrate the instrument capability. Hydro- and halocarbon data from SOFIA are compared with mixing ratios of carbon monoxide (CO) and methane (CH4), used to define the pollution plume. By using excess (ExR) and normalized excess mixing ratios (NEMRs) the pollution could be attributed to two air masses of distinctly different origin, identified by back-trajectory analysis. This work endorses the use of SOFIA for aircraft operation and demonstrates the value of relatively high-frequency, multicomponent measurements in atmospheric chemistry research.

Details

show
hide
Language(s): eng - English
 Dates: 2017
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.5194/amt-2017-201
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Atmospheric Measurement Techniques Discussions
  Other : Atmos. Meas. Tech. Discuss.
  Abbreviation : AMTD
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Katlenburg-Lindau : Copernicus
Pages: 30 Volume / Issue: 10 Sequence Number: - Start / End Page: - Identifier: Other: 1867-8610
CoNE: https://pure.mpg.de/cone/journals/resource/1867-8610