User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse


  Energy Storage as Part of a Secure Energy Supply

Ausfelder, F., Beilmann, C., Bertau, M., Bräuninger, S., Heinzel, A., Hoer, R., et al. (2017). Energy Storage as Part of a Secure Energy Supply. ChemBioEng Reviews, 4(3), 144-210. doi:10.1002/cben.201700004.

Item is


show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-002D-CAD9-4 Version Permalink: http://hdl.handle.net/11858/00-001M-0000-002E-54C6-6
Genre: Journal Article


show Files




Ausfelder, Florian1, Author
Beilmann, Christian2, Author
Bertau, Martin3, Author
Bräuninger, Sigmar4, Author
Heinzel, Angelika5, Author
Hoer, Renate6, Author
Koch, Wolfram6, Author
Mahlendorf, Falko5, Author
Metzelthin, Anja7, Author
Peuckert, Marcell8, Author
Plass, Ludolf9, Author
Räuchle, Konstantin3, Author
Reuter, Martin10, Author
Schaub, Georg11, Author
Schiebahn, Sebastian12, Author
Schwab, Ekkehard4, Author
Schüth, Ferdi13, Author              
Stolten, Detlef14, Author
Teßmer, Gisa15, Author
Wagemann, Kurt1, Author
Ziegahn, Karl-Friedrich7, 16, Author more..
1DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., Frankfurt am Main, Germany, ou_persistent22              
2Helmholtz Gemeinschaft, Berlin, Germany, ou_persistent22              
3Technische Universität Bergakademie Freiberg, Freiberg, Germany, ou_persistent22              
4BASF SE, Ludwigshafen, Germany, ou_persistent22              
5Universität Duisburg-Essen, Duisburg, Germany, ou_persistent22              
6GDCh Gesellschaft Deutscher Chemiker e.V., Frankfurt am Main, Germany , ou_persistent22              
7Deutsche Physikalische Gesellschaft e.V., Bad Honnef, Germany, ou_persistent22              
8Hofheim am Taunus, Germany, ou_persistent22              
9Kronberg im Taunus, Germany, ou_persistent22              
10VCI Verband der Chemischen Industrie e. V., Frankfurt am Main, Germany, ou_persistent22              
11Karlsruher Institut für Technologie, Engler-Bunte-Institut, Karlsruhe, Germany, ou_persistent22              
12Niederzier, Germany, ou_persistent22              
13Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_1445589              
14Forschungszentrum Jülich GmbH, Jülich, Germany, ou_persistent22              
15DGMK Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V., Hamburg, Germany, ou_persistent22              
16Karlsruher Institut für Technologie, Campus Nord, Eggenstein-Leopoldshafen, Germany, ou_persistent22              


Free keywords: Energy storage technology, Energy supply, Optimization
 Abstract: The current energy system is subject to a fundamental transformation: A system that is oriented towards a constant energy supply by means of fossil fuels is now expected to integrate increasing amounts of renewable energy to achieve overall a more sustainable energy supply. The challenges arising from this paradigm shift are currently most obvious in the area of electric power supply. However, it affects all areas of the energy system, albeit with different results. Within the energy system, various independent grids fulfill the function of transporting and spatially distributing energy or energy carriers, and the demand-oriented supply ensures that energy demands are met at all times. However, renewable energy sources generally supply their energy independently from any specific energy demand. Their contribution to the overall energy system is expected to increase significantly. Energy storage technologies are one option for temporal matching of energy supply and demand. Energy storage systems have the ability to take up a certain amount of energy, store it in a storage medium for a suitable period of time, and release it in a controlled manner after a certain time delay. Energy storage systems can also be constructed as process chains by combining unit operations, each of which cover different aspects of these functions. Large-scale mechanical storage of electric power is currently almost exclusively achieved by pumped-storage hydroelectric power stations. These systems may be supplemented in the future by compressed-air energy storage and possibly air separation plants. In the area of electrochemical storage, various technologies are currently in various stages of research, development, and demonstration of their suitability for large-scale electrical energy storage. Thermal energy storage technologies are based on the storage of sensible heat, exploitation of phase transitions, adsorption/desorption processes, and chemical reactions. The latter offer the possibility of permanent and loss-free storage of heat. The storage of energy in chemical bonds involves compounds that can act as energy carriers or as chemical feedstocks. Thus, they are in direct economic competition with established (fossil fuel) supply routes. The key technology here – now and for the foreseeable future – is the electrolysis of water to produce hydrogen and oxygen. Hydrogen can be transformed by various processes into other energy carriers, which can be exploited in different sectors of the energy system and/or as raw materials for energy-intensive industrial processes. Some functions of energy storage systems can be taken over by industrial processes. Within the overall energy system, chemical energy storage technologies open up opportunities to link and interweave the various energy streams and sectors. Chemical energy storage not only offers means for greater integration of renewable energy outside the electric power sector, it also creates new opportunities for increased flexibility, novel synergies, and additional optimization. Several examples of specific energy utilization are discussed and evaluated with respect to energy storage applications.The article describes various technologies for energy storage and their potential applications in the context of Germany's Energiewende, i.e. the transition towards a more sustainable energy system. Therefore, the existing legal framework defines some of the discussions and findings within the article, specifically the compensation for renewable electricity providers defined by the German Renewable Energy Sources Act, which is under constant reformation. While the article is written from a German perspective, the authors hope this article will be of general interest for anyone working in the areas of energy systems or energy technology.


Language(s): eng - English
 Dates: 2017-03-102017-06-232017-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: Peer
 Identifiers: DOI: 10.1002/cben.201700004
 Degree: -



Legal Case


Project information


Source 1

Title: ChemBioEng Reviews
Source Genre: Journal
Publ. Info: Weinheim, Germany : Wiley-VCH
Pages: - Volume / Issue: 4 (3) Sequence Number: - Start / End Page: 144 - 210 Identifier: ISSN: 2196-9744