English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Food distribution in ant colonies: Trophallaxis and self-organization

Gräwer, J. (2017). Food distribution in ant colonies: Trophallaxis and self-organization. PhD Thesis, Georg-August-Universität, Göttingen.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Gräwer, Johannes1, Author           
Affiliations:
1Group Non-equilibrium soft matter, Department of Dynamics of Complex Fluids, Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063308              

Content

show
hide
Free keywords: ants; food distribution; collective behavior; trophallaxis; self-organization; agent-based model
 Abstract: Roughly one hundred million years ago, solitary insect species evolved social interactions that enabled the formation of colonies. A main reason for this advance was their ability to feed each other with previously ingested food. Among other things, this allowed them to develop the well-known division of labor: groups or castes of individuals specializing in certain tasks. This social organization reached its climax in the evolution of non-reproductive castes, sacrificing their own reproduction to the benefit of the colony. The mutual feeding technique that supported this social evolution is called ‘trophallaxis’. This thesis is based on the question how ant colonies use trophallaxis to supply their members with food. The main goal of this thesis is to understand the collective properties of the food distribution in ant colonies with the simplest possible computational and analytical models. To this end, we construct a series of biophysically motivated simulation models and analytical descriptions of trophallaxis that include all its essential features. Our models are the first complete theoretical description of the physical mechanisms behind the self-organized food distribution in ant colonies. Despite our reductionist approach, the models exhibit a number of interesting properties that reproduce some of the behaviors seen in real ant colonies. We are confident that our models can serve as benchmarks for the behavior of real ant colonies or more biologically detailed models. As statistical null models, they can be used to assess to what extent an observed behavior is due to non-random strategies or due to the collective properties of a stochastic system. We find and analytically predict the characteristic time scales of trophallaxis for both well-mixed colonies and colonies with small spatial fidelity zones. We even successfully cover the range between these two limits with semi-analytic predictions. These newly discovered relationships between individual behavior and global food distribution dynamics provide microscopic explanations of experimental observations and phenomenological theories that were unknown so far.

Details

show
hide
Language(s): eng - English
 Dates: 2017-06-012017
 Publication Status: Issued
 Pages: 157
 Publishing info: Göttingen : Georg-August-Universität
 Table of Contents: -
 Rev. Type: -
 Identifiers: -
 Degree: PhD

Event

show

Legal Case

show

Project information

show

Source

show