English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Foam Decay with Incomparable Lorenz Curves

Knicker, K., & Plath, P. J. (2016). Foam Decay with Incomparable Lorenz Curves. In G. Wunner, & A. Pelster (Eds.), Selforganization in Complex Systems: The Past, Present, and Future of Synergetics (pp. 325-331). Cham: Springer. doi:10.1007/978-3-319-27635-9_23.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Knicker, Katharina1, 2, Author           
Plath, Peter Jörg1, Author           
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Physikalische Chemie, Universität Bremen, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The decay of beer foam is recorded by evaluating pictures, measuring the bubble sizes. We use Lorenz curves in order to avoid the problem of bubble size classification, which is naturally connected with the estimation of a classical distribution function. It turns out that consecutive Lorenz curves intersect which each other. The intersection of Lorenz curves is directly connected with Ruch’s idea of incomparable diagrams in the lattices of partitions. This observation suggests the existence of different, incomparable structures in decaying foam.

Details

show
hide
Language(s): eng - English
 Dates: 2015-12-272016
 Publication Status: Issued
 Pages: 7
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/978-3-319-27635-9_23
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Selforganization in Complex Systems: The Past, Present, and Future of Synergetics
Source Genre: Book
 Creator(s):
Wunner, Günter, Editor
Pelster, Axel, Editor
Affiliations:
-
Publ. Info: Cham : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 325 - 331 Identifier: ISBN: 978-3-319-27633-5
ISBN: 978-3-319-27635-9
DOI: 10.1007/978-3-319-27635-9

Source 2

show
hide
Title: Understanding Complex Systems
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -