Deutsch
 
Benutzerhandbuch Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Surface Chemistry of Perovskite-Type Electrodes during High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy

Opitz, A. K., Nenning, A., Rameshan, C., Kubicek, M., Götsch, T., Blume, R., et al. (2017). Surface Chemistry of Perovskite-Type Electrodes during High Temperature CO2 Electrolysis Investigated by Operando Photoelectron Spectroscopy. ACS Applied Materials and Interfaces, 9(41), 35847-35860. doi:10.1021/acsami.7b10673.

Item is

Basisdaten

einblenden: ausblenden:
Datensatz-Permalink: http://hdl.handle.net/11858/00-001M-0000-002D-FCED-B Versions-Permalink: http://hdl.handle.net/21.11116/0000-0000-7615-4
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
acsami.7b10673.pdf (Verlagsversion), 4MB
Name:
acsami.7b10673.pdf
Beschreibung:
-
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2017
Copyright Info:
The Authors

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Opitz, Alexander K.1, Autor
Nenning, Andreas1, Autor
Rameshan, Christoph2, Autor
Kubicek, Markus1, Autor
Götsch, Thomas3, Autor
Blume, Raoul4, Autor              
Hävecker, Michael4, Autor              
Knop-Gericke, Axel4, Autor              
Rupprechter, Günther2, Autor              
Klötzer, Bernhard3, Autor
Fleig, Jürgen1, Autor
Affiliations:
1Vienna University of Technology, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-EC, 1060 Vienna, Austria, ou_persistent22              
2Vienna University of Technology, Institute of Materials Chemistry, ou_persistent22              
3University of Innsbruck, Institute of Physical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria, ou_persistent22              
4Inorganic Chemistry, Fritz Haber Institute, Max Planck Society, ou_24023              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Any substantial move of energy sources from fossil fuels to renewable resources requires large scale storage of excess energy, for example via power to fuel processes. In this respect electrochemical reduction of CO2 may become very important, since it offers a method of sustainable CO production, which is a crucial prerequisite for synthesis of sustainable fuels. Carbon dioxide reduction in solid oxide electrolysis cells (SOECs) is particularly promising owing to the high operating temperature, which leads to both improved thermodynamics and fast kinetics. Additionally, compared to purely chemical CO formation on oxide catalysts, SOECs have the outstanding advantage that the catalytically active oxygen vacancies are continuously formed at the counter electrode, move to the working electrode where they reactivate the oxide surface without the need of a preceding chemical (e.g. by H2) or thermal reduction step. In the present work, the surface chemistry of (La,Sr)FeO3-δ and (La,Sr)CrO3-δ based perovskite-type electrodes was studied during electrochemical CO2 reduction by means of near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) at SOEC operating temperatures. These measurements revealed the formation of a carbonate intermediate, which develops on the oxide surface only upon cathodic polarization (i.e. under sufficiently reducing conditions). The amount of these adsorbates increases with increasing oxygen vacancy concentration of the electrode material, thus suggesting vacant oxygen lattice sites as the predominant adsorption sites for carbon dioxide. The correlation of carbonate coverage and cathodic polarization indicates that an additional electron transfer is required to form the carbonate radical and thus to activate CO2 on the oxide surface. The results also suggest that acceptor doped oxides with high electron concentration and high oxygen vacancy concentration may be particularly suited for CO2 reduction. In contrast to water splitting, the CO2 electrolysis reaction was not significantly affected by metallic particles, which were exsolved from the perovskite electrodes upon cathodic polarization. Carbon formation on the electrode surface was only observed under very strong cathodic conditions and the carbon could be easily removed by retracting the applied voltage without damaging the electrode, which is particularly promising from an application point of view.

Details

einblenden:
ausblenden:
Sprache(n): eng - Englisch
 Datum: 2017-07-202017-09-212017-09-212017-10-18
 Publikationsstatus: Im Druck publiziert
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acsami.7b10673
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Applied Materials and Interfaces
  Kurztitel : ACS Appl. Mater. Interfaces
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: 14 Band / Heft: 9 (41) Artikelnummer: - Start- / Endseite: 35847 - 35860 Identifikator: ISSN: 1944-8244
CoNE: /journals/resource/1944-8244