English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor

Li, T., Piltz, B., Podola, B., Dron, A., de Beer, D., & Melkonian, M. (2016). Microscale profiling of photosynthesis-related variables in a highly productive biofilm photobioreactor. Biotechnology and Bioengineering, 113(5): 5, pp. 1046-1055.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Li, T., Author
Piltz, B.1, Author           
Podola, B., Author
Dron, A.2, Author           
de Beer, D.2, Author           
Melkonian, M., Author
Affiliations:
1IMPRS MarMic, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481704              
2Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481711              

Content

show
hide
Free keywords: -
 Abstract: In the present study depth profiles of light, oxygen, pH and photosynthetic performance in an artificial biofilm of the green alga Halochlorella rubescens in a porous substrate photobioreactor (PSBR) were recorded with microsensors. Biofilms were exposed to different light intensities (50-1,000mol photons m(-2) s(-1)) and CO2 levels (0.04-5% v/v in air). The distribution of photosynthetically active radiation showed almost identical trends for different surface irradiances, namely: a relatively fast drop to a depth of about 250 mu m, (to 5% of the incident), followed by a slower decrease. Light penetrated into the biofilm deeper than the Lambert-Beer Law predicted, which may be attributed to forward scattering of light, thus improving the overall light availability. Oxygen concentration profiles showed maxima at a depth between 50 and 150m, depending on the incident light intensity. A very fast gas exchange was observed at the biofilm surface. The highest oxygen concentration of 3.2mM was measured with 1,000mol photons m(-2) s(-1) and 5% supplementary CO2. Photosynthetic productivity increased with light intensity and/or CO2 concentration and was always highest at the biofilm surface; the stimulating effect of elevated CO2 concentration in the gas phase on photosynthesis was enhanced by higher light intensities. The dissolved inorganic carbon concentration profiles suggest that the availability of the dissolved free CO2 has the strongest impact on photosynthetic productivity. The results suggest that dark respiration could explain previously observed decrease in growth rate over cultivation time in this type of PSBR. Our results represent a basis for understanding the complex dynamics of environmental variables and metabolic processes in artificial phototrophic biofilms exposed to a gas phase and can be used to improve the design and operational parameters of PSBRs. Biotechnol. Bioeng. 2016;113: 1046-1055. (c) 2015 Wiley Periodicals, Inc.

Details

show
hide
Language(s): eng - English
 Dates: 2015-11-202016-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 732751
ISI: 000373476700013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Biotechnology and Bioengineering
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 113 (5) Sequence Number: 5 Start / End Page: 1046 - 1055 Identifier: ISSN: 0006-3592