English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments

Chennu, A., Färber, P., Volkenborn, N., Al-Najjar, M. A. A., Janssen, F., de Beer, D., et al. (2013). Hyperspectral imaging of the microscale distribution and dynamics of microphytobenthos in intertidal sediments. Limnology and Oceanography: Methods, 11, 511-528.

Item is

Files

show Files
hide Files
:
Chennu13.pdf (Publisher version), 3MB
Name:
Chennu13.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Chennu, A.1, Author           
Färber, P.2, Author           
Volkenborn, N., Author
Al-Najjar, M. A. A.1, Author           
Janssen, F.3, Author           
de Beer, D.1, Author           
Polerecky, L.1, Author           
Affiliations:
1Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481711              
2Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481692              
3HGF MPG Joint Research Group for Deep Sea Ecology & Technology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481702              

Content

show
hide
Free keywords: -
 Abstract: We describe a novel, field-deployable hyperspectral imaging system, called Hypersub, that allows noninvasive in situ mapping of the microphytobenthos (MPB) biomass distribution with a high spatial (sub-millimeter) and temporal (minutes) resolution over areas of 1 x 1 m. The biomass is derived from a log-transformed and near-infrared corrected reflectance hyperspectral index, which exhibits a linear relationship (R-2 > 0.97) with the chlorophyll a (Ch1 a) concentration in the euphotic zone of the sediment and depends on the sediment grain size. Deployments of the system revealed that due to factors such as sediment topography, bioturbation, and grazing, the distribution of MPB in intertidal sediments is remarkably heterogeneous, with Ch1 a concentrations varying laterally by up to 400% of the average value over a distance of 1 cm. Furthermore, due to tidal cycling and diel light variability, MPB concentrations in the top 1 mm of sediments are very dynamic, changing by 40-80% over a few hours due to vertical migration. We argue that the high-resolution hyperspectral imaging method overcomes the inadequate resolution of traditional methods based on sedimentary Ch1 a extraction, and thus helps improve our understanding of the processes that control benthic primary production in coastal sediments.

Details

show
hide
Language(s): eng - English
 Dates: 2013-10
 Publication Status: Issued
 Pages: 18
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 675186
ISI: 000328880400001
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Limnology and Oceanography: Methods
  Other : Limnol. Oceanogr.: Methods
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Waco, Tex. : American Society of Limnology and Oceanography
Pages: - Volume / Issue: 11 Sequence Number: - Start / End Page: 511 - 528 Identifier: ISSN: 1541-5856
CoNE: https://pure.mpg.de/cone/journals/resource/991042728183802