English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Role of Diatoms in the Spatial-Temporal Distribution of Intracellular Nitrate in Intertidal Sediment

Stief, P., Kamp, A., & de Beer, D. (2013). Role of Diatoms in the Spatial-Temporal Distribution of Intracellular Nitrate in Intertidal Sediment. PLoS One, 8(9): e73257.

Item is

Files

show Files
hide Files
:
Stief13.pdf (Publisher version), 3MB
Name:
Stief13.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Stief, P.1, Author           
Kamp, A.1, Author           
de Beer, D.1, Author           
Affiliations:
1Permanent Research Group Microsensor, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481711              

Content

show
hide
Free keywords: -
 Abstract: Intracellular nitrate storage allows microorganisms to survive fluctuating nutrient availability and anoxic conditions in aquatic ecosystems. Here we show that diatoms, ubiquitous and highly abundant microalgae, represent major cellular reservoirs of nitrate in an intertidal flat of the German Wadden Sea and are potentially involved in anaerobic nitrate respiration. Intracellular nitrate (ICNO3) was present year-round in the sediment and was spatially and temporally correlated with fucoxanthin, the marker photopigment of diatoms. Pyrosequencing of SSU rRNA genes of all domains of life confirmed that ICNO3 storage was most likely due to diatoms rather than other known nitrate-storing microorganisms (i.e., large sulfur bacteria and the eukaryotic foraminifers and gromiids). Sedimentary ICNO3 concentrations reached up to 22.3 mu mol dm(-3) at the sediment surface and decreased with sediment depth to negligible concentrations below 5 cm. Similarly, the ICNO3/fucoxanthin ratio and porewater nitrate (PWNO3) concentrations decreased with sediment depth, suggesting that ICNO3 of diatoms is in equilibrium with PWNO3, but is enriched relative to PWNO3 by 2-3 orders of magnitude. Cell-volume-specific ICNO3 concentrations in a diatom mat covering the sediment surface during spring were estimated at 9.3-46.7 mmol L-1. Retrieval of 18S rRNA gene sequences related to known nitrate-storing and nitrate-ammonifying diatom species suggested that diatoms in dark and anoxic sediment layers might be involved in anaerobic nitrate respiration. Due to the widespread dominance of diatoms in microphytobenthos, the total nitrate pool in coastal marine sediments may generally be at least two times larger than derived from porewater measurements and partially be recycled to ammonium.

Details

show
hide
Language(s): eng - English
 Dates: 2013-09-04
 Publication Status: Issued
 Pages: 15
 Publishing info: -
 Table of Contents: -
 Rev. Type: Internal
 Identifiers: eDoc: 675201
ISI: 000324515600085
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: PLoS One
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: San Francisco, CA : Public Library of Science
Pages: - Volume / Issue: 8 (9) Sequence Number: e73257 Start / End Page: - Identifier: ISSN: 1932-6203
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000277850