English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Microbial Community Response during the Iron Fertilization Experiment LOHAFEX

Thiele, S., Fuchs, B. M., Ramaiah, N., & Amann, R. (2012). Microbial Community Response during the Iron Fertilization Experiment LOHAFEX. Applied and Environmental Microbiology, 78(24), 8803-8812.

Item is

Files

show Files
hide Files
:
Thiele12.pdf (Publisher version), 2MB
Name:
Thiele12.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Thiele, S.1, Author           
Fuchs, B. M.1, Author           
Ramaiah, N., Author
Amann, R.1, Author           
Affiliations:
1Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481696              

Content

show
hide
Free keywords: -
 Abstract: Iron fertilization experiments in high-nutrient, low-chlorophyll areas are known to induce phytoplankton blooms. However, little is known about the response of the microbial community upon iron fertilization. As part of the LOHAFEX experiment in the southern Atlantic Ocean, Bacteria and Archaea were monitored within and outside an induced bloom, dominated by Phaeocystis-like nanoplankton, during the 38 days of the experiment. The microbial production increased 1.6-fold (thymidine uptake) and 2.1-fold (leucine uptake), while total cell numbers increased only slightly over the course of the experiment. 454 tag pyrosequencing of partial 16S rRNA genes and catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) showed that the composition and abundance of the bacterial and archaeal community in the iron-fertilized water body were remarkably constant without development of typical bloom-related succession patterns. Members of groups usually found in phytoplankton blooms, such as Roseobacter and Gammaproteobacteria, showed no response or only a minor response to the bloom. However, sequence numbers and total cell numbers of the SAR11 and SAR86 clades increased slightly but significantly toward the end of the experiment. It seems that although microbial productivity was enhanced within the fertilized area, a succession-like response of the microbial community upon the algal bloom was averted by highly effective grazing. Only small-celled members like the SAR11 and SAR86 clades could possibly escape the grazing pressure, explaining a net increase of those clades in numbers.

Details

show
hide
Language(s): eng - English
 Dates: 2012-12
 Publication Status: Issued
 Pages: 10
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 634882
ISI: 000311213200034
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied and Environmental Microbiology
  Other : Appl. Environ. Microbiol.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Society for Microbiology (ASM)
Pages: - Volume / Issue: 78 (24) Sequence Number: - Start / End Page: 8803 - 8812 Identifier: ISSN: 0099-2240
CoNE: https://pure.mpg.de/cone/journals/resource/954927519600