English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard

Finke, N., Vandieken, V., & Jørgensen, B. B. (2007). Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiology Ecology, 59(1), 10-22.

Item is

Files

show Files
hide Files
:
Finke7.pdf (Publisher version), 309KB
Name:
Finke7.pdf
Description:
-
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Finke, N.1, Author           
Vandieken, V.1, Author           
Jørgensen, B. B.1, Author           
Affiliations:
1Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, Max Planck Society, ou_2481693              

Content

show
hide
Free keywords: volatile fatty acids; potential selenate reduction; inhibition; acetate turnover
 Abstract: The contribution of volatile fatty acids (VFA) as e–-donors for anaerobic terminal oxidation of organic carbon through iron and sulfate reduction was studied in Arctic fjord sediment. Dissolved inorganic carbon, Fe2+, VFA concentrations, and sulfate reduction were monitored in slurries from the oxidized (0–2 cm) and the reduced (5–9 cm) zone. In the 0–2 cm layer, 2/3 of the mineralization could be attributed to sulfate reduction and 1/3 to iron reduction. In the 5–9 cm layer, sulfate reduction was the sole mineralization process. Acetate and lactate turnover rates were measured by radiotracer. Inhibition of sulfate reduction with selenate resulted in the accumulation of acetate, propionate, and isobutyrate. The acetate turnover rates determined by radiotracer and accumulation after inhibition were similar. VFA turnover accounted for 21% and 52% of the mineralization through sulfate reduction in the 0–2 and 5–9 cm layer, respectively. Acetate and lactate turnover in the inhibited 0–2 cm slurry was attributed to iron reduction and accounted for 10% and 2% of the iron reduction. Therefore, 88% and 79% of the iron and sulfate reduction in the 0–2 cm layer, respectively, must be fueled by alternative e−-donors. The accumulation of VFA in the selenate–inhibited 0–2 cm slurry did not enhance iron reduction, indicating that iron reducers were not limited by VFA availability.

Details

show
hide
Language(s): eng - English
 Dates: 2006-10-272007-01-01
 Publication Status: Issued
 Pages: 13
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: eDoc: 345429
ISI: 000242784700003
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: FEMS Microbiology Ecology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Amsterdam : Oxford University Press
Pages: - Volume / Issue: 59 (1) Sequence Number: - Start / End Page: 10 - 22 Identifier: ISSN: 0168-6496
CoNE: https://pure.mpg.de/cone/journals/resource/954925526820_1