日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

Spandan, V., Meschini, V., Ostilla-Monico, R., Lohse, D., Querzoli, G., de Tullio, M. D., & Verzicco, R. (2017). A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes. Journal of Computational Physics, 348, 567-590. doi:10.1016/j.jcp.2017.07.036.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

関連URL

表示:

作成者

表示:
非表示:
 作成者:
Spandan, V., 著者
Meschini, V., 著者
Ostilla-Monico, R., 著者
Lohse, Detlef1, 著者           
Querzoli, G., 著者
de Tullio, M. D., 著者
Verzicco, R., 著者
所属:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

内容説明

表示:
非表示:
キーワード: Fluid-structure interaction; Spring networks; Liquid interfaces and membranes
 要旨: In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.

資料詳細

表示:
非表示:
言語: eng - English
 日付: 2017-07-262017-11-01
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: 査読あり
 識別子(DOI, ISBNなど): DOI: 10.1016/j.jcp.2017.07.036
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Journal of Computational Physics
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 348 通巻号: - 開始・終了ページ: 567 - 590 識別子(ISBN, ISSN, DOIなど): -