English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  3D reconstruction and standardization of the rat facial nucleus for precise mapping of vibrissal motor networks.

Guest, J. M., Seetharama, M. M., Wendel, E. S., Strick, P. L., & Oberlaender, M. (2018). 3D reconstruction and standardization of the rat facial nucleus for precise mapping of vibrissal motor networks. Neuroscience, 368, 171-186. doi:10.1016/j.neuroscience.2017.09.031.

Item is

Files

show Files
hide Files
:
1-s2.0-S0306452217306759-main.pdf (Any fulltext), 9MB
Name:
1-s2.0-S0306452217306759-main.pdf
Description:
Open Access
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Not specified

Creators

show
hide
 Creators:
Guest, Jason Mike1, 2, Author           
Seetharama, M. M.1, Author
Wendel, E. S.3, Author
Strick, P. L.3, Author
Oberlaender, Marcel1, Author           
Affiliations:
1Max Planck Research Group In Silico Brain Sciences, Center of Advanced European Studies and Research (caesar), Max Planck Society, ou_2333691              
2International Max Planck Research School (IMPRS) for Brain and Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Max Planck Society, ou_3481421              
3External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The rodent facial nucleus (FN) comprises motoneurons (MNs) that control the facial musculature. In the lateral part of the FN, populations of vibrissal motoneurons (vMNs) innervate two groups of muscles that generate movements of the whiskers. Vibrissal MNs thus represent the terminal point of the neuronal networks that generate rhythmic whisking during exploratory behaviors and that modify whisker movements based on sensory–motor feedback during tactile-based perception. Here, we combined retrograde tracer injections into whisker-specific muscles, with large-scale immunohistochemistry and digital reconstructions to generate an average model of the rat FN. The model incorporates measurements of the FN geometry, its cellular organization and a whisker row-specific map formed by vMNs. Furthermore, the model provides a digital 3D reference frame that allows registering structural data – obtained across scales and animals – into a common coordinate system with a precision of ∼60 µm. We illustrate the registration method by injecting replication competent rabies virus into the muscle of a single whisker. Retrograde transport of the virus to vMNs enabled reconstruction of their dendrites. Subsequent trans-synaptic transport enabled mapping the presynaptic neurons of the reconstructed vMNs. Registration of these data to the FN reference frame provides a first account of the morphological and synaptic input variability within a population of vMNs that innervate the same muscle.

Details

show
hide
Language(s): eng - English
 Dates: 2017-09-272018-01-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neuroscience
  Abbreviation : Neuroscience
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Oxford : Pergamon
Pages: - Volume / Issue: 368 Sequence Number: - Start / End Page: 171 - 186 Identifier: ISSN: 0306-4522
ISSN: 1873-7544
CoNE: https://pure.mpg.de/cone/journals/resource/954925514498