Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Towards physiologically meaningful water-use efficiency estimates from eddy covariance data

Knauer, J., Zaehle, S., Medlyn, B. E., Reichstein, M., Williams, C. A., Migliavacca, M., et al. (2018). Towards physiologically meaningful water-use efficiency estimates from eddy covariance data. Global Change Biology, 24(2), 694-710. doi:10.1111/gcb.13893.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
BGC2721.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
BGC2721.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
BGC2721s1.docx (Ergänzendes Material), 2MB
 
Datei-Permalink:
-
Name:
BGC2721s1.docx
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute for Biogeochemistry, MJBK; )
MIME-Typ / Prüfsumme:
application/vnd.openxmlformats-officedocument.wordprocessingml.document
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Knauer, Jürgen1, 2, Autor           
Zaehle, Sönke1, 3, Autor           
Medlyn, Belinda E., Autor
Reichstein, Markus4, Autor           
Williams, Christopher A., Autor
Migliavacca, Mirco5, Autor           
Kauwe, Martin G. De, Autor
Werner, Christiane, Autor
Keitel, Claudia, Autor
Kolari, Pasi, Autor
Limousin, Jean-Marc, Autor
Linderson, Maj-Lena, Autor
Affiliations:
1Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938309              
2IMPRS International Max Planck Research School for Global Biogeochemical Cycles, Max Planck Institute for Biogeochemistry, Max Planck Society, Hans-Knöll-Str. 10, 07745 Jena, DE, ou_1497757              
3Terrestrial Biosphere Modelling, Dr. Sönke Zähle, Department Biogeochemical Integration, Prof. Dr. Martin Heimann, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1497787              
4Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1688139              
5Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society, ou_1938307              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Intrinsic water-use efficiency (iWUE) characterizes the physiological control on the simultaneous exchange of water and carbon dioxide in terrestrial ecosystems. Knowledge of iWUE is commonly gained from leaf-level gas exchange measurements, which are inevitably restricted in their spatial and temporal coverage. Flux measurements based on the eddy covariance (EC) technique can overcome these limitations, as they provide continuous and long-term records of carbon and water fluxes at the ecosystem scale. However, vegetation gas exchange parameters derived from EC data are subject to scale-dependent and method-specific uncertainties that compromise their ecophysiological interpretation as well as their comparability among ecosystems and across spatial scales. Here, we use estimates of canopy conductance and gross primary productivity (GPP) derived from EC data to calculate a measure of iWUE (G1 ,"stomatal slope") at the ecosystem level at six sites comprising tropical, Mediterranean, temperate, and boreal forests. We assess the following six mechanisms potentially causing discrepancies between leaf and ecosystem-level estimates of G1 : 1) non-transpirational water fluxes; 2) aerodynamic conductance; 3) meteorological deviations between measurement height and canopy surface; 4) energy balance non-closure; 5) uncertainties in NEE partitioning; and 6) physiological within-canopy gradients. Our results demonstrate that an unclosed energy balance caused the largest uncertainties, in particular if it was associated with erroneous latent heat flux estimates. The effect of aerodynamic conductance on G1 was sufficiently captured with a simple representation. G1 was found to be less sensitive to meteorological deviations between canopy surface and measurement height and, given that data are appropriately filtered, to non-transpirational water fluxes. Uncertainties in the derived GPP and physiological within-canopy gradients and their implications for parameter estimates at leaf and ecosystem level are discussed. Our results highlight the importance of adequately considering the sources of uncertainty outlined here when EC-derived WUE is interpreted in an ecophysiological context. This article is protected by copyright. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2017-09-052017-10-112018
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: Anderer: BGC2721
DOI: 10.1111/gcb.13893
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : Quincy
Grant ID : 647204
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Global Change Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford, UK : Blackwell Science
Seiten: - Band / Heft: 24 (2) Artikelnummer: - Start- / Endseite: 694 - 710 Identifikator: ISSN: 1354-1013
CoNE: https://pure.mpg.de/cone/journals/resource/954925618107